BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35342068)

  • 1. Method for puncture trajectory planning in liver tumors thermal ablation based on NSGA-III.
    Dong Q; Cao M; Gu F; Gong W; Cai Q
    Technol Health Care; 2022; 30(5):1243-1256. PubMed ID: 35342068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-stage puncture path planning algorithm of ablation needles for percutaneous radiofrequency ablation of liver tumors.
    Luo M; Jiang H; Shi T
    Comput Biol Med; 2022 Jun; 145():105506. PubMed ID: 35429832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Automatic Needle Puncture Path-Planning Method for Thermal Ablation of Lung Tumors.
    Wang Z; Wu W; Wu S; Zhou Z; Zhang H
    Diagnostics (Basel); 2024 Jan; 14(2):. PubMed ID: 38275462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-security automatic path planning of radiofrequency ablation for liver tumors.
    Li J; Gao H; Shen N; Wu D; Feng L; Hu P
    Comput Methods Programs Biomed; 2023 Dec; 242():107769. PubMed ID: 37714019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible needle puncture path planning for liver tumors based on deep reinforcement learning.
    Hu W; Jiang H; Wang M
    Phys Med Biol; 2022 Sep; 67(19):. PubMed ID: 36067775
    [No Abstract]   [Full Text] [Related]  

  • 6. Multiple objective planning for thermal ablation of liver tumors.
    Liang L; Cool D; Kakani N; Wang G; Ding H; Fenster A
    Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1775-1786. PubMed ID: 32880777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards quantitative and intuitive percutaneous tumor puncture via augmented virtual reality.
    Li R; Tong Y; Yang T; Guo J; Si W; Zhang Y; Klein R; Heng PA
    Comput Med Imaging Graph; 2021 Jun; 90():101905. PubMed ID: 33848757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-assisted needle trajectory planning and mathematical modeling for liver tumor thermal ablation: A review.
    Zhang R; Wu SC; Wu WW; Gao HJ; Zhou ZH
    Math Biosci Eng; 2019 May; 16(5):4846-4872. PubMed ID: 31499693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile multi-constrained planning for thermal ablation of large liver tumors.
    Li R; Shi Y; Si W; Huang L; Zhuang B; Weinmann M; Klein R; Heng PA
    Comput Med Imaging Graph; 2021 Dec; 94():101993. PubMed ID: 34710628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A method of lung puncture path planning based on multi-level constraint].
    Sun F; Pei H; Yang Y; Fan Q; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Jun; 39(3):462-470. PubMed ID: 35788515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of imaging-guided thermal ablation puncture routes for tumors of the hepatic caudate lobe.
    Yan Y; Lin ZY; Chen J
    J Cancer Res Ther; 2020; 16(2):258-262. PubMed ID: 32474510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preoperative trajectory planning for percutaneous procedures in deformable environments.
    Hamzé N; Peterlík I; Cotin S; Essert C
    Comput Med Imaging Graph; 2016 Jan; 47():16-28. PubMed ID: 26629592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformal coverage of liver tumors by the thermal coagulation zone in 2450-MHz microwave ablation.
    Gao H; Wang X; Wu S; Zhou Z; Bai Y; Wu W
    Int J Hyperthermia; 2019; 36(1):591-605. PubMed ID: 31172824
    [No Abstract]   [Full Text] [Related]  

  • 14. Clinical flexible needle puncture path planning based on particle swarm optimization.
    Cai C; Sun C; Han Y; Zhang Q
    Comput Methods Programs Biomed; 2020 Sep; 193():105511. PubMed ID: 32408238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Path planning algorithm for percutaneous puncture lung mass biopsy procedure based on the multi-objective constraints and fuzzy optimization.
    Zhang J; Zhang J; Han P; Chen XZ; Zhang Y; Li W; Qin J; He L
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38394681
    [No Abstract]   [Full Text] [Related]  

  • 16. Automatic Radiofrequency Ablation Planning for Liver Tumors With Multiple Constraints Based on Set Covering.
    Liang L; Cool D; Kakani N; Wang G; Ding H; Fenster A
    IEEE Trans Med Imaging; 2020 May; 39(5):1459-1471. PubMed ID: 31689185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal ablation with configurable shapes: a comprehensive, automated model for bespoke tumor treatment.
    Paolucci I; Bulatović M; Weber S; Tinguely P
    Eur Radiol Exp; 2023 Nov; 7(1):67. PubMed ID: 37932631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiautomatic Radiofrequency Ablation Planning Based on Constrained Clustering Process for Hepatic Tumors.
    Chen R; Jiang T; Lu F; Wang K; Kong D
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):645-657. PubMed ID: 28600235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Path planning for percutaneous lung biopsy based on the loose-Pareto and adaptive heptagonal optimization method.
    Liu Q; Zhou G; Zhong J; Tang L; Lu Y; Qin J; He L; Zhang J
    Med Biol Eng Comput; 2023 Jun; 61(6):1449-1472. PubMed ID: 36746837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study on computational models of multi-electrode radiofrequency ablation of large liver tumors.
    Audigier C; Mohaiu AT; Alzaga A; Bale R; Mansi T
    Int J Comput Assist Radiol Surg; 2022 Aug; 17(8):1489-1496. PubMed ID: 35776400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.