These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35343680)

  • 1. Optical Hydrogen Nanothermometry of Plasmonic Nanoparticles under Illumination.
    Tiburski C; Nugroho FAA; Langhammer C
    ACS Nano; 2022 Apr; 16(4):6233-6243. PubMed ID: 35343680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.
    Van de Broek B; Grandjean D; Trekker J; Ye J; Verstreken K; Maes G; Borghs G; Nikitenko S; Lagae L; Bartic C; Temst K; Van Bael MJ
    Small; 2011 Sep; 7(17):2498-506. PubMed ID: 21744495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal monitoring during photothermia: hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry.
    Quintanilla M; García I; de Lázaro I; García-Alvarez R; Henriksen-Lacey M; Vranic S; Kostarelos K; Liz-Marzán LM
    Theranostics; 2019; 9(24):7298-7312. PubMed ID: 31695769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy.
    Swearer DF; Bourgeois BB; Angell DK; Dionne JA
    Acc Chem Res; 2021 Oct; 54(19):3632-3642. PubMed ID: 34492177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermometries for Single Nanoparticles Heated with Light.
    Martinez LP; Mina Villarreal MC; Zaza C; Barella M; Acuna GP; Stefani FD; Violi IL; Gargiulo J
    ACS Sens; 2024 Mar; 9(3):1049-1064. PubMed ID: 38482790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics.
    Baffou G; Bordacchini I; Baldi A; Quidant R
    Light Sci Appl; 2020; 9():108. PubMed ID: 32612818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoactivated Nanoscale Temperature Gradient Detection Using X-ray Absorption Spectroscopy as a Direct Nanothermometry Method.
    Espinosa A; Castro GR; Reguera J; Castellano C; Castillo J; Camarero J; Wilhelm C; García MA; Muñoz-Noval Á
    Nano Lett; 2021 Jan; 21(1):769-777. PubMed ID: 33382624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward Quantitative Nanothermometry Using Single-Molecule Counting.
    Reinhardt PA; Crawford AP; West CA; DeLong G; Link S; Masiello DJ; Willets KA
    J Phys Chem B; 2021 Nov; 125(44):12197-12205. PubMed ID: 34723520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-Ray Nanothermometry of Nanoparticles in Tumor-Mimicking Tissues under Photothermia.
    López-Méndez R; Reguera J; Fromain A; Serea ESA; Céspedes E; Teran FJ; Zheng F; Parente A; García MÁ; Fonda E; Camarero J; Wilhelm C; Muñoz-Noval Á; Espinosa A
    Adv Healthc Mater; 2023 Dec; 12(31):e2301863. PubMed ID: 37463675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal Scaling and Design Rules of Hydrogen-Induced Optical Properties in Pd and Pd-Alloy Nanoparticles.
    Nugroho FAA; Darmadi I; Zhdanov VP; Langhammer C
    ACS Nano; 2018 Oct; 12(10):9903-9912. PubMed ID: 30157370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors.
    Liu GQ; Liu RB; Li Q
    Acc Chem Res; 2023 Jan; 56(2):95-105. PubMed ID: 36594628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles.
    Kamarudheen R; Kumari G; Baldi A
    Nat Commun; 2020 Aug; 11(1):3957. PubMed ID: 32770052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A plasmonic fluorescent ratiometric temperature sensor for self-limiting hyperthermic applications utilizing FRET enhancement in the plasmonic field.
    George S; Palantavida S
    Analyst; 2023 Aug; 148(16):3918-3930. PubMed ID: 37466341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gallium Plasmonic Nanoantennas Unveiling Multiple Kinetics of Hydrogen Sensing, Storage, and Spillover.
    Losurdo M; Gutiérrez Y; Suvorova A; Giangregorio MM; Rubanov S; Brown AS; Moreno F
    Adv Mater; 2021 Jul; 33(29):e2100500. PubMed ID: 34076312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic heating in optically trapped Au nanoparticles measured by dark-field spectroscopy.
    Andres-Arroyo A; Wang F; Toe WJ; Reece P
    Biomed Opt Express; 2015 Sep; 6(9):3646-54. PubMed ID: 26417530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental measurement of local high temperature at the surface of gold nanorods using doped ZnGa
    Glais E; Maître A; Viana B; Chanéac C
    Nanoscale Adv; 2021 May; 3(10):2862-2869. PubMed ID: 36134193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and Theoretical Observation of Photothermal Chirality in Gold Nanoparticle Helicoids.
    Rafiei Miandashti A; Khosravi Khorashad L; Kordesch ME; Govorov AO; Richardson HH
    ACS Nano; 2020 Apr; 14(4):4188-4195. PubMed ID: 32176469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic hydrogen sensing with nanostructured metal hydrides.
    Wadell C; Syrenova S; Langhammer C
    ACS Nano; 2014 Dec; 8(12):11925-40. PubMed ID: 25427244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme.
    Langhammer C; Zorić I; Kasemo B; Clemens BM
    Nano Lett; 2007 Oct; 7(10):3122-7. PubMed ID: 17850168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.