These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35343955)

  • 1. Construction of Local Field Potential Microelectrodes for in vivo Recordings from Multiple Brain Structures Simultaneously.
    Brodovskaya A; Shiono S; Batabyal T; Williamson J; Kapur J
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35343955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of microdrive arrays for chronic neural recordings in awake behaving mice.
    Chang EH; Frattini SA; Robbiati S; Huerta PT
    J Vis Exp; 2013 Jul; (77):e50470. PubMed ID: 23851569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies.
    Canolty RT; Ganguly K; Kennerley SW; Cadieu CF; Koepsell K; Wallis JD; Carmena JM
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17356-61. PubMed ID: 20855620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of ultralight weight, adjustable multi-electrode probes for electrophysiological recordings in mice.
    Brunetti PM; Wimmer RD; Liang L; Siegle JH; Voigts J; Wilson M; Halassa MM
    J Vis Exp; 2014 Sep; (91):e51675. PubMed ID: 25225749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multichannel Extracellular Recording in Freely Moving Mice.
    Ghouse M; Li M; Long C; Jiang J
    J Vis Exp; 2023 May; (195):. PubMed ID: 37306412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A versatile and modular tetrode-based device for single-unit recordings in rodent ex vivo and in vivo acute preparations.
    Machado F; Sousa N; Monteiro P; Jacinto L
    J Neurosci Methods; 2020 Jul; 341():108755. PubMed ID: 32417534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Töyräs J; Jääskeläinen JE; Djupsund K; Tanila H; Lappalainen R
    Biosens Bioelectron; 2009 Jun; 24(10):3067-72. PubMed ID: 19380223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-unit recording with iridium oxide modified stereotrodes in Drosophila melanogaster.
    Zhong C; Zhang Y; He W; Wei P; Lu Y; Zhu Y; Liu L; Wang L
    J Neurosci Methods; 2014 Jan; 222():218-29. PubMed ID: 24286699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Procedure for recording the simultaneous activity of single neurons distributed across cortical areas during sensory discrimination.
    Hernández A; Nácher V; Luna R; Alvarez M; Zainos A; Cordero S; Camarillo L; Vázquez Y; Lemus L; Romo R
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16785-90. PubMed ID: 18946031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A machine learning approach to characterize sequential movement-related states in premotor and motor cortices.
    DePass M; Falaki A; Quessy S; Dancause N; Cos I
    J Neurophysiol; 2022 May; 127(5):1348-1362. PubMed ID: 35171745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Spatial Reach of Neuronal Coherence and Spike-Field Coupling across the Human Neocortex.
    Myers JC; Smith EH; Leszczynski M; O'Sullivan J; Yates MJ; McKhann G; Mesgarani N; Schroeder C; Schevon C; Sheth SA
    J Neurosci; 2022 Aug; 42(32):6285-6294. PubMed ID: 35790403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression of genes involved in the chronic response to intracortical microelectrodes.
    Song S; Druschel LN; Chan ER; Capadona JR
    Acta Biomater; 2023 Oct; 169():348-362. PubMed ID: 37507031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of STN-DBS Electrode Implantation Track in Parkinson's Disease by Using Local Field Potentials.
    Telkes I; Jimenez-Shahed J; Viswanathan A; Abosch A; Ince NF
    Front Neurosci; 2016; 10():198. PubMed ID: 27242404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of simple, customised, brain-spanning, multi-channel, linear microelectrode arrays.
    Banstola A; Silva C; Ulrich K; Ruan M; Robertson L; McNaughton N
    J Neurosci Methods; 2021 Jan; 348():109011. PubMed ID: 33249180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and Implementation of Carbon Fiber Microelectrode Arrays for Chronic and Acute In Vivo Recordings.
    Reikersdorfer KN; Stacy AK; Bressler DA; Hayashi LS; Hengen KB; Van Hooser SD
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34424245
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.