These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35343980)

  • 1. Mechanistic insights into H
    Yan J; Zhou Y; Liu X; Li DS
    Phys Chem Chem Phys; 2022 Apr; 24(14):8182-8188. PubMed ID: 35343980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial Confinement of Pt Nanoparticles in Carbon Nanotubes for Efficient and Selective H
    Jin X; Yan J; Liu X; Zhang Q; Huang Y; Wang Y; Wang C; Wu Y
    Adv Sci (Weinh); 2024 Mar; 11(12):e2306893. PubMed ID: 38225898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Oxidation of H
    Isegawa M; Matsumoto T; Ogo S
    Inorg Chem; 2020 Jan; 59(2):1014-1028. PubMed ID: 31898897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Insight into the Synergetic Interaction of Ammonia Borane and Water on ZIF-67-Derived Co@Porous Carbon for Controlled Generation of Dihydrogen.
    Fang MH; Wu SY; Chang YH; Narwane M; Chen BH; Liu WL; Kurniawan D; Chiang WH; Lin CH; Chuang YC; Hsu IJ; Chen HT; Lu TT
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47465-47477. PubMed ID: 34592812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting the Catalytic Performance of NiMoO
    Wang M; Zhang Q; Wang Y; Liu X
    Inorg Chem; 2023 Oct; 62(42):17555-17564. PubMed ID: 37822237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water Splitting by C
    Hou GL; Yang T; Li M; Vanbuel J; Lushchikova OV; Ferrari P; Bakker JM; Janssens E
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27095-27101. PubMed ID: 34610202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of a Key Intermediate Complex Species in Catalytic Hydrolysis of NH
    Yan WJ; Zheng YF; Zhou TW; Wang GZ; Wang DD; Yuan HK
    Front Chem; 2020; 8():604. PubMed ID: 33024740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible-Light Acceleration of H
    Kang N; Wang Q; Djeda R; Wang W; Fu F; Moro MM; Ramirez MLA; Moya S; Coy E; Salmon L; Pozzo JL; Astruc D
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):53816-53826. PubMed ID: 33201661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co and Co
    Butenko VR; Komova OV; Simagina VI; Lipatnikova IL; Ozerova AM; Danilova NA; Rogov VA; Odegova GV; Bulavchenko OA; Chesalov YA; Netskina OV
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Generation upon Nanocatalyzed Hydrolysis of Hydrogen-Rich Boron Derivatives: Recent Developments.
    Wang C; Wang Q; Fu F; Astruc D
    Acc Chem Res; 2020 Oct; 53(10):2483-2493. PubMed ID: 33034454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational mechanistic investigation of hydrogen production in water using the [Rh(III)(dmbpy)2Cl2](+)/[Ru(II)(bpy)3](2+)/ascorbic acid photocatalytic system.
    Kayanuma M; Stoll T; Daniel C; Odobel F; Fortage J; Deronzier A; Collomb MN
    Phys Chem Chem Phys; 2015 Apr; 17(16):10497-509. PubMed ID: 25804803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen generation from a sodium borohydride-nickel core@shell structure under hydrolytic conditions.
    Lai Q; Alligier D; Aguey-Zinsou KF; Demirci UB
    Nanoscale Adv; 2019 Jul; 1(7):2707-2717. PubMed ID: 36132719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the chemically non-innocent ligand in the catalytic formation of hydrogen and carbon dioxide from methanol and water with the metal as the spectator.
    Li H; Hall MB
    J Am Chem Soc; 2015 Sep; 137(38):12330-42. PubMed ID: 26320885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides.
    Ulloa OA; Huynh MT; Richers CP; Bertke JA; Nilges MJ; Hammes-Schiffer S; Rauchfuss TB
    J Am Chem Soc; 2016 Jul; 138(29):9234-45. PubMed ID: 27328053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational study of H2 and O2 production from water splitting by small (MO2)n clusters (M = Ti, Zr, Hf).
    Fang Z; Dixon DA
    J Phys Chem A; 2013 Apr; 117(16):3539-55. PubMed ID: 23544659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical insights into TM@PHEs as single-atom catalysts for water splitting based on density functional theory.
    Jiang Y; Zou W; Li Y; Cai Y
    Phys Chem Chem Phys; 2022 Jan; 24(2):975-981. PubMed ID: 34915549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study.
    Mondal B; Neese F; Ye S
    Inorg Chem; 2015 Aug; 54(15):7192-8. PubMed ID: 26204267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of the Diazo Functionality of α-Diazocarbonyl Compounds into a Methylene Group by NH
    Kidonakis M; Stratakis M
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33477732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging Implications of the Concept of Hydricity in Energy-Relevant Catalytic Processes.
    Kumar A; Semwal S; Choudhury J
    Chemistry; 2021 Apr; 27(19):5842-5857. PubMed ID: 33236805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Metal Atoms Supported on MBenes for Robust Electrochemical Hydrogen Evolution.
    Li B; Wu Y; Li N; Chen X; Zeng X; Arramel ; Zhao X; Jiang J
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9261-9267. PubMed ID: 32064860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.