These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35344330)

  • 21. Modifying the Oxidative Potentials of Imines in a Dye Loaded Capsule for Photocatalytic Cyclization with Hydrogen Evolution.
    Yang Y; Li H; Shi Y; Wu Y; Jing X; Duan C
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202319605. PubMed ID: 38217331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reductive Activation of Aryl Chlorides by Tuning the Radical Cation Properties of N-Phenylphenothiazines as Organophotoredox Catalysts.
    Weick F; Hagmeyer N; Giraud M; Dietzek-Ivanšić B; Wagenknecht HA
    Chemistry; 2023 Nov; 29(66):e202302347. PubMed ID: 37589486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A General Light-Driven Organocatalytic Platform for the Activation of Inert Substrates.
    Wu S; Schiel F; Melchiorre P
    Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202306364. PubMed ID: 37322860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reductive Electrophotocatalysis: Merging Electricity and Light To Achieve Extreme Reduction Potentials.
    Kim H; Kim H; Lambert TH; Lin S
    J Am Chem Soc; 2020 Feb; 142(5):2087-2092. PubMed ID: 31951390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fe/N-doped carbon magnetic nanocubes toward highly efficient selective decolorization of organic dyes under ultrasonic irradiation.
    Yang F; Jiang G; Chang Q; Huang P; Lei M
    Chemosphere; 2021 Nov; 283():131154. PubMed ID: 34182631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications.
    Pattengale B; Yang S; Ludwig J; Huang Z; Zhang X; Huang J
    J Am Chem Soc; 2016 Jul; 138(26):8072-5. PubMed ID: 27322216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porous metal-organic frameworks for heterogeneous biomimetic catalysis.
    Zhao M; Ou S; Wu CD
    Acc Chem Res; 2014 Apr; 47(4):1199-207. PubMed ID: 24499017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pillared Metal-Organic Framework Initiating Intermolecular Atom-Transfer Radical Addition via Visible-Light-Induced Electron Transfer Activation of Haloalkanes.
    Liu X; Guo Z; Che Y; Bai R; Chi Y; Guo C; Xing H
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34114-34123. PubMed ID: 34269044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly Efficient Separation of Anionic Organic Pollutants from Water via Construction of Functional Cationic Metal-Organic Frameworks and Mechanistic Study.
    Zhao C; Du Y; Zhang J; Mi Y; Su H; Fei T; Li S; Pang S
    ACS Appl Mater Interfaces; 2020 May; 12(20):22835-22844. PubMed ID: 32337963
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Merging of the photocatalysis and copper catalysis in metal-organic frameworks for oxidative C-C bond formation.
    Shi D; He C; Qi B; Chen C; Niu J; Duan C
    Chem Sci; 2015 Feb; 6(2):1035-1042. PubMed ID: 29560191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modifying electron transfer between photoredox and organocatalytic units via framework interpenetration for β-carbonyl functionalization.
    Xia Z; He C; Wang X; Duan C
    Nat Commun; 2017 Aug; 8(1):361. PubMed ID: 28842552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Through-Space Intervalence Charge Transfer as a Mechanism for Charge Delocalization in Metal-Organic Frameworks.
    Hua C; Doheny PW; Ding B; Chan B; Yu M; Kepert CJ; D'Alessandro DM
    J Am Chem Soc; 2018 May; 140(21):6622-6630. PubMed ID: 29727176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inorganometallic Photocatalyst for CO
    Son HJ; Pac C; Kang SO
    Acc Chem Res; 2021 Dec; 54(24):4530-4544. PubMed ID: 34881862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal-free photoinduced C(sp
    Shu C; Noble A; Aggarwal VK
    Nature; 2020 Oct; 586(7831):714-719. PubMed ID: 33116286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chalcogen-bridged coordination polymer for the photocatalytic activation of aryl halides.
    Zeng L; Zhang T; Liu R; Tian W; Wu K; Zhu J; Wang Z; He C; Feng J; Guo X; Douka AI; Duan C
    Nat Commun; 2023 Jul; 14(1):4002. PubMed ID: 37414824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.
    Hartwig JF
    Acc Chem Res; 2012 Jun; 45(6):864-73. PubMed ID: 22075137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Eosin Y-Containing Metal-Organic Framework as a Heterogeneous Catalyst for Direct Photoactivation of Inert C-H Bonds.
    Zhao L; Du Z; Ji G; Wang Y; Cai W; He C; Duan C
    Inorg Chem; 2022 May; 61(19):7256-7265. PubMed ID: 35507831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.