These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35344364)

  • 1. Photoactivatable
    Gupta A; Gautam A; Sasmal PK
    J Med Chem; 2022 Apr; 65(7):5274-5287. PubMed ID: 35344364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible and NIR light photoactivatable
    Gupta A; Singh N; Gautam A; Dhakar N; Kumar S; Sasmal PK
    RSC Med Chem; 2023 Jun; 14(6):1088-1100. PubMed ID: 37360392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoactivatable, biologically-relevant phenols with sensitivity toward 2-photon excitation.
    McLain DE; Rea AC; Widegren MB; Dore TM
    Photochem Photobiol Sci; 2015 Dec; 14(12):2151-8. PubMed ID: 26467796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials.
    Weinstain R; Slanina T; Kand D; Klán P
    Chem Rev; 2020 Dec; 120(24):13135-13272. PubMed ID: 33125209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoactivated drug delivery and bioimaging.
    Yang Y; Mu J; Xing B
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Mar; 9(2):. PubMed ID: 27094696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Photon-Sensitive Chromophore for the Photorelease of Biologically Active Phenols.
    Asad N; Deodato D; Asad N; Gore S; Dore TM
    ACS Chem Neurosci; 2023 Dec; 14(23):4163-4175. PubMed ID: 37988406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria-Targeted Photoactivatable Real-Time Monitoring of a Controlled Drug Delivery Platform.
    Singh N; Gupta A; Prasad P; Sah RK; Singh A; Kumar S; Singh S; Gupta S; Sasmal PK
    J Med Chem; 2021 Dec; 64(24):17813-17823. PubMed ID: 34886661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm.
    Hammers MD; Hodny MH; Bader TK; Mahmoodi MM; Fang S; Fenton AD; Nurie K; Trial HO; Xu F; Healy AT; Ball ZT; Blank DA; Distefano MD
    Org Biomol Chem; 2021 Mar; 19(10):2213-2223. PubMed ID: 33349821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocleavable Protecting Groups Using a Sulfite Self-Immolative Linker for High Uncaging Quantum Yield and Aqueous Solubility.
    Schulte AM; Vivien Q; Leene JH; Alachouzos G; Feringa BL; Szymanski W
    Angew Chem Int Ed Engl; 2024 Aug; ():e202411380. PubMed ID: 39140843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Photon Excitable Photoremovable Protecting Groups Based on the Quinoline Scaffold for Use in Biology.
    Hennig AK; Deodato D; Asad N; Herbivo C; Dore TM
    J Org Chem; 2020 Jan; 85(2):726-744. PubMed ID: 31808339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote Light-Responsive Nanocarriers for Controlled Drug Delivery: Advances and Perspectives.
    Zhao W; Zhao Y; Wang Q; Liu T; Sun J; Zhang R
    Small; 2019 Nov; 15(45):e1903060. PubMed ID: 31599125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Two-Photon-Responsive Chromophore, 2-(
    Nguyen TP; Nguyen HD; Abe M
    J Org Chem; 2024 Apr; 89(7):4691-4701. PubMed ID: 38502935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery.
    Haine AT; Niidome T
    Chem Pharm Bull (Tokyo); 2017; 65(7):625-628. PubMed ID: 28674334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tandem Systems for Two-Photon Uncaging of Bioactive Molecules.
    Klausen M; Dubois V; Verlhac JB; Blanchard-Desce M
    Chempluschem; 2019 Jun; 84(6):589-598. PubMed ID: 31944026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and Biological Evaluation of a Photoactivatable Small Molecule Microtubule-Targeting Agent.
    Döbber A; Phoa AF; Abbassi RH; Stringer BW; Day BW; Johns TG; Abadleh M; Peifer C; Munoz L
    ACS Med Chem Lett; 2017 Apr; 8(4):395-400. PubMed ID: 28435525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocontrolled nanoparticle delivery systems for biomedical applications.
    Bansal A; Zhang Y
    Acc Chem Res; 2014 Oct; 47(10):3052-60. PubMed ID: 25137555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength-Selective Uncaging of Two Different Photoresponsive Groups on One Effector Molecule for Light-Controlled Activation and Deactivation.
    Elamri I; Abdellaoui C; Bains JK; Hohmann KF; Gande SL; Stirnal E; Wachtveitl J; Schwalbe H
    J Am Chem Soc; 2021 Jul; 143(28):10596-10603. PubMed ID: 34236854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fate of the contact ion pair determines the photochemistry of coumarin-based photocleavable protecting groups.
    Schulte AM; Alachouzos G; Szymanski W; Feringa BL
    Chem Sci; 2024 Feb; 15(6):2062-2073. PubMed ID: 38332822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible stimuli-responsive nanomaterials with on-off switching ability for biomedical applications.
    Alejo T; Uson L; Arruebo M
    J Control Release; 2019 Nov; 314():162-176. PubMed ID: 31644937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localizable and photoactivatable fluorophore for spatiotemporal two-photon bioimaging.
    Zhou L; Zhang X; Lv Y; Yang C; Lu D; Wu Y; Chen Z; Liu Q; Tan W
    Anal Chem; 2015 Jun; 87(11):5626-31. PubMed ID: 25903256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.