BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35344496)

  • 1. Robust Peak Detection for Holter ECGs by Self-Organized Operational Neural Networks.
    Gabbouj M; Kiranyaz S; Malik J; Zahid MU; Ince T; Chowdhury MEH; Khandakar A; Tahir A
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):9363-9374. PubMed ID: 35344496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Patient-Specific ECG Classification by 1D Self-Operational Neural Networks.
    Malik J; Devecioglu OC; Kiranyaz S; Ince T; Gabbouj M
    IEEE Trans Biomed Eng; 2022 May; 69(5):1788-1801. PubMed ID: 34910628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-organized Operational Neural Networks with Generative Neurons.
    Kiranyaz S; Malik J; Abdallah HB; Ince T; Iosifidis A; Gabbouj M
    Neural Netw; 2021 Aug; 140():294-308. PubMed ID: 33857707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust R-Peak Detection in Low-Quality Holter ECGs Using 1D Convolutional Neural Network.
    Zahid MU; Kiranyaz S; Ince T; Devecioglu OC; Chowdhury MEH; Khandakar A; Tahir A; Gabbouj M
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):119-128. PubMed ID: 34110986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global ECG Classification by Self-Operational Neural Networks With Feature Injection.
    Zahid MU; Kiranyaz S; Gabbouj M
    IEEE Trans Biomed Eng; 2023 Jan; 70(1):205-215. PubMed ID: 35786545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organized operational neural networks for severe image restoration problems.
    Malik J; Kiranyaz S; Gabbouj M
    Neural Netw; 2021 Mar; 135():201-211. PubMed ID: 33401226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks.
    Kiranyaz S; Ince T; Gabbouj M
    IEEE Trans Biomed Eng; 2016 Mar; 63(3):664-75. PubMed ID: 26285054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cascaded Convolutional Neural Network for Assessing Signal Quality of Dynamic ECG.
    Zhang Q; Fu L; Gu L
    Comput Math Methods Med; 2019; 2019():7095137. PubMed ID: 31781289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm.
    Pandit D; Zhang L; Liu C; Chattopadhyay S; Aslam N; Lim CP
    Comput Methods Programs Biomed; 2017 Jun; 144():61-75. PubMed ID: 28495007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global hybrid multi-scale convolutional network for accurate and robust detection of atrial fibrillation using single-lead ECG recordings.
    Zhang P; Ma C; Sun Y; Fan G; Song F; Feng Y; Zhang G
    Comput Biol Med; 2021 Dec; 139():104880. PubMed ID: 34700255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robustness of convolutional neural networks to physiological electrocardiogram noise.
    Venton J; Harris PM; Sundar A; Smith NAS; Aston PJ
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2212):20200262. PubMed ID: 34689617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach for arrhythmia classification using deep coded features and LSTM networks.
    Yildirim O; Baloglu UB; Tan RS; Ciaccio EJ; Acharya UR
    Comput Methods Programs Biomed; 2019 Jul; 176():121-133. PubMed ID: 31200900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-information fusion neural networks for arrhythmia automatic detection.
    Chen A; Wang F; Liu W; Chang S; Wang H; He J; Huang Q
    Comput Methods Programs Biomed; 2020 Sep; 193():105479. PubMed ID: 32388066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convolutional Neural Networks for patient-specific ECG classification.
    Kiranyaz S; Ince T; Hamila R; Gabbouj M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2608-11. PubMed ID: 26736826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive learning and cross training improves R-wave detection in ECG.
    Ganapathy N; Swaminathan R; Deserno TM
    Comput Methods Programs Biomed; 2021 Mar; 200():105931. PubMed ID: 33508772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the Accuracy of R-Peak Detection in a Wearable Armband Device for Daily Life Electrocardiogram Monitoring Using a Deep Convolutional Denoising Encoder-Decoder Network.
    Hajeb-Mohammadalipour S; Hossain MB; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4291-4294. PubMed ID: 36085851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic QRS complex detection using two-level convolutional neural network.
    Xiang Y; Lin Z; Meng J
    Biomed Eng Online; 2018 Jan; 17(1):13. PubMed ID: 29378580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Deep residual convolutional neural network for recognition of electrocardiogram signal arrhythmias].
    Li D; Zhang H; Liu Z; Huang J; Wang T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):189-198. PubMed ID: 31016934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dilated inception CNN-LSTM network for fetal heart rate estimation.
    Fotiadou E; van Sloun RJG; van Laar JOEH; Vullings R
    Physiol Meas; 2021 May; 42(4):. PubMed ID: 33853039
    [No Abstract]   [Full Text] [Related]  

  • 20. [Heartbeat-aware convolutional neural network for R-peak detection of wearable device ECG data].
    Tan H; Lai J; Wang Z; Ji L; Zhang Y; Wang J; Song Y; Yang W
    Nan Fang Yi Ke Da Xue Xue Bao; 2022 Mar; 42(3):375-383. PubMed ID: 35426801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.