BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35344759)

  • 1. MdBAK1 overexpression in apple enhanced resistance to replant disease as well as to the causative pathogen Fusarium oxysporum.
    Liu X; Xu S; Wang X; Xin L; Wang L; Mao Z; Chen X; Wu S
    Plant Physiol Biochem; 2022 May; 179():144-157. PubMed ID: 35344759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of
    Duan YN; Jiang WT; Zhang R; Chen R; Chen XS; Yin CM; Mao ZQ
    Plant Dis; 2022 Nov; 106(11):2958-2966. PubMed ID: 35306841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MdPR4, a pathogenesis-related protein in apple, is involved in chitin recognition and resistance response to apple replant disease pathogens.
    Zhou Z; Zhu Y; Tian Y; Yao JL; Bian S; Zhang H; Zhang R; Gao Q; Yan Z
    J Plant Physiol; 2021 May; 260():153390. PubMed ID: 33667937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome Analysis Reveals New Insights into
    Zheng L; Yang Y; Gao C; Ma J; Shah K; Zhang D; Zhao C; Xing L; Han M; An N; Ren X
    J Agric Food Chem; 2019 Sep; 67(35):9757-9771. PubMed ID: 31373492
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterization of
    Li B; He X; Guo S; Li D; Wang Y; Meng X; Dai P; Hu T; Cao K; Wang S
    Front Plant Sci; 2024; 15():1370440. PubMed ID: 38708392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exogenous Dopamine and
    Liu Y; Liu Q; Li X; Tang Z; Zhang Z; Gao H; Ma F; Li C
    Phytopathology; 2022 Dec; 112(12):2503-2513. PubMed ID: 35801852
    [No Abstract]   [Full Text] [Related]  

  • 7. Exogenous dopamine and overexpression of the dopamine synthase gene MdTYDC alleviated apple replant disease.
    Gao T; Liu Y; Liu X; Zhao K; Shan L; Wu Q; Liu Y; Zhang Z; Ma F; Li C
    Tree Physiol; 2021 Aug; 41(8):1524-1541. PubMed ID: 33171491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic analysis of molecular responses in Malus domestica 'M26' roots affected by apple replant disease.
    Weiß S; Bartsch M; Winkelmann T
    Plant Mol Biol; 2017 Jun; 94(3):303-318. PubMed ID: 28424966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired defense reactions in apple replant disease-affected roots of Malus domestica 'M26'.
    Weiß S; Liu B; Reckwell D; Beerhues L; Winkelmann T
    Tree Physiol; 2017 Dec; 37(12):1672-1685. PubMed ID: 29036594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring microbial determinants of apple replant disease (ARD): a microhabitat approach under split-root design.
    Balbín-Suárez A; Lucas M; Vetterlein D; Sørensen SJ; Winkelmann T; Smalla K; Jacquiod S
    FEMS Microbiol Ecol; 2020 Dec; 96(12):. PubMed ID: 33045057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Phlorizin-Degrading
    Duan Y; Zhao L; Jiang W; Chen R; Zhang R; Chen X; Yin C; Mao Z
    Front Microbiol; 2022; 13():839484. PubMed ID: 35308362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome changes associated with apple (Malus domestica) root defense response after Fusarium proliferatum f. sp. malus domestica infection.
    Duan Y; Ma S; Chen X; Shen X; Yin C; Mao Z
    BMC Genomics; 2022 Jul; 23(1):484. PubMed ID: 35780085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root growth, function and rhizosphere microbiome analyses show local rather than systemic effects in apple plant response to replant disease soil.
    Lucas M; Balbín-Suárez A; Smalla K; Vetterlein D
    PLoS One; 2018; 13(10):e0204922. PubMed ID: 30296282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant growth promotion and biocontrol properties of a synthetic community in the control of apple disease.
    Qiao R; Xu M; Jiang J; Song Z; Wang M; Yang L; Guo H; Mao Z
    BMC Plant Biol; 2024 Jun; 24(1):546. PubMed ID: 38872113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation, Identification, and Antibacterial Mechanisms of
    Duan Y; Chen R; Zhang R; Jiang W; Chen X; Yin C; Mao Z
    Front Microbiol; 2021; 12():746799. PubMed ID: 34603274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quicklime and Superphosphate Alleviating Apple Replant Disease by Improving Acidified Soil.
    Zhao L; Jiang W; Chen R; Wang H; Duan Y; Chen X; Shen X; Yin C; Mao Z
    ACS Omega; 2022 Mar; 7(9):7920-7930. PubMed ID: 35284737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced microbial potential for the degradation of phenolic compounds in the rhizosphere of apple plantlets grown in soils affected by replant disease.
    Radl V; Winkler JB; Kublik S; Yang L; Winkelmann T; Vestergaard G; Schröder P; Schloter M
    Environ Microbiome; 2019 Nov; 14(1):8. PubMed ID: 33902732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63.
    Liu Y; Liu Q; Li X; Zhang Z; Ai S; Liu C; Ma F; Li C
    Plant Physiol; 2023 Jul; 192(3):2015-2029. PubMed ID: 36721923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genes Involved in Stress Response and Especially in Phytoalexin Biosynthesis Are Upregulated in Four
    Reim S; Rohr AD; Winkelmann T; Weiß S; Liu B; Beerhues L; Schmitz M; Hanke MV; Flachowsky H
    Front Plant Sci; 2019; 10():1724. PubMed ID: 32180775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of Bacterial Root Endophytes of
    Mahnkopp-Dirks F; Radl V; Kublik S; Gschwendtner S; Schloter M; Winkelmann T
    Front Microbiol; 2022; 13():841558. PubMed ID: 35401446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.