These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35344889)

  • 1. Control of arsenic release from paddy soils using alginate encapsulated calcium peroxide.
    Kim HB; Kim JG; Park J; Baek K
    J Hazard Mater; 2022 Jun; 432():128751. PubMed ID: 35344889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of arsenic release by calcium peroxide (CaO
    Kim HB; Kim JG; Alessi DS; Baek K
    Chemosphere; 2023 May; 324():138321. PubMed ID: 36878361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of applying calcium peroxide on the accumulation of arsenic in rice plants grown in arsenic-elevated paddy soils.
    Syu CH; Yu CH; Lee DY
    Environ Pollut; 2020 Nov; 266(Pt 2):115140. PubMed ID: 32653722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of arsenic mobilization in paddy soils by manganese and iron oxides.
    Xu X; Chen C; Wang P; Kretzschmar R; Zhao FJ
    Environ Pollut; 2017 Dec; 231(Pt 1):37-47. PubMed ID: 28783611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental opportunities and challenges of utilizing unactivated calcium peroxide to treat soils co-contaminated with mixed chlorinated organic compounds.
    Oba BT; Zheng X; Aborisade MA; Battamo AY; Kumar A; Kavwenje S; Liu J; Sun P; Yang Y; Zhao L
    Environ Pollut; 2021 Dec; 291():118239. PubMed ID: 34592328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigating translocation of arsenic from rice field to soil pore solution by manipulating the redox conditions.
    Kim S; Kim HB; Kwon EE; Baek K
    Sci Total Environ; 2021 Mar; 762():143124. PubMed ID: 33127142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of calcium peroxide on arsenic uptake by celery (Apium graveolens L.) grown in arsenic contaminated soil.
    Liu CP; Luo CL; Xu XH; Wu CA; Li FB; Zhang G
    Chemosphere; 2012 Mar; 86(11):1106-11. PubMed ID: 22226367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction.
    Xu X; Wang P; Zhang J; Chen C; Wang Z; Kopittke PM; Kretzschmar R; Zhao FJ
    Environ Pollut; 2019 Aug; 251():952-960. PubMed ID: 31234262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of 2,4,6-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound.
    Arienzo M
    Chemosphere; 2000 Feb; 40(4):331-7. PubMed ID: 10665396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial reactions and environmental factors affecting the dissolution and release of arsenic in the severely contaminated soils under anaerobic or aerobic conditions.
    Chen X; Zeng XC; Kawa YK; Wu W; Zhu X; Ullah Z; Wang Y
    Ecotoxicol Environ Saf; 2020 Feb; 189():109946. PubMed ID: 31759742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic effects of the combination of oxalate and ascorbate on arsenic extraction from contaminated soils.
    Lee JC; Kim EJ; Baek K
    Chemosphere; 2017 Feb; 168():1439-1446. PubMed ID: 27923505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of Iron on the Release of Arsenic in Flooded Paddy Soils].
    Wang X; Zhong SX; Chen ZL; He HF; Dong JH; Chen XL
    Huan Jing Ke Xue; 2018 Jun; 39(6):2911-2918. PubMed ID: 29965650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal variations of Cu and Cd mobility and their controlling factors in pore water of contaminated paddy soil under acid mine drainage: A laboratory column study.
    Pan Y; Chen J; Gao K; Lu G; Ye H; Wen Z; Yi X; Dang Z
    Sci Total Environ; 2021 Oct; 792():148523. PubMed ID: 34157528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RDX degradation by chemical oxidation using calcium peroxide in bench scale sludge systems.
    Lapointe MC; Martel R; Cassidy DP
    Environ Res; 2020 Sep; 188():109836. PubMed ID: 32798953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of biogeochemical interactions on bioaccessibility of arsenic in soils of a former smelter site in Republic of Korea.
    Yang K; Jeong S; Jho EH; Nam K
    Environ Geochem Health; 2016 Dec; 38(6):1347-1354. PubMed ID: 26769492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations.
    Hashimoto Y; Kanke Y
    Environ Pollut; 2018 Jul; 238():617-623. PubMed ID: 29609173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of arsenic-contaminated paddy soil by iron oxyhydroxide and iron oxyhydroxide sulfate-modified coal gangue under flooded condition.
    Chen M; Liu Y; Zhang D; Zhu J; Chen X; Yuan L
    Sci Total Environ; 2022 Jan; 804():150199. PubMed ID: 34520918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of labile arsenic from flooded paddy soils with a novel extractive column loaded with quartz-supported nanoscale zero-valent iron.
    Huang R; Wang X; Xing B
    Environ Pollut; 2019 Dec; 255(Pt 1):113249. PubMed ID: 31542664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediation of arsenic-contaminated paddy soil by iron-modified biochar.
    Wu C; Cui M; Xue S; Li W; Huang L; Jiang X; Qian Z
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20792-20801. PubMed ID: 29756185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.