These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35345882)

  • 1. Homogeneous Catalytic CO
    Ramos VM; de Oliveira-Filho AGS; de Lima Batista AP
    J Phys Chem A; 2022 Apr; 126(13):2082-2090. PubMed ID: 35345882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitution reactions of iron(ii) carbamoyl-thioether complexes related to mono-iron hydrogenase.
    Xie ZL; Durgaprasad G; Ali AK; Rose MJ
    Dalton Trans; 2017 Aug; 46(33):10814-10829. PubMed ID: 28715006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-inspired computational design of iron catalysts for the hydrogenation of carbon dioxide.
    Yang X
    Chem Commun (Camb); 2015 Aug; 51(66):13098-101. PubMed ID: 26186244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational prediction of pentadentate iron and cobalt complexes as a mimic of mono-iron hydrogenase for the hydrogenation of carbon dioxide to methanol.
    Wang W; Qiu B; Yang X
    Dalton Trans; 2019 Jun; 48(23):8034-8038. PubMed ID: 31074752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, structural characterization, and some properties of 2-acylmethyl-6-ester group-difunctionalized pyridine-containing iron complexes related to the active site of [Fe]-hydrogenase.
    Song LC; Hu FQ; Wang MM; Xie ZJ; Xu KK; Song HB
    Dalton Trans; 2014 Jun; 43(21):8062-71. PubMed ID: 24718303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor.
    Pan HJ; Huang G; Wodrich MD; Tirani FF; Ataka K; Shima S; Hu X
    Nat Chem; 2019 Jul; 11(7):669-675. PubMed ID: 31110253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic Hydrogenation Catalyzed by a Manganese Model of [Fe]-Hydrogenase.
    Pan HJ; Hu X
    Angew Chem Int Ed Engl; 2020 Mar; 59(12):4942-4946. PubMed ID: 31820844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Functional Model of [Fe]-Hydrogenase.
    Xu T; Yin CJ; Wodrich MD; Mazza S; Schultz KM; Scopelliti R; Hu X
    J Am Chem Soc; 2016 Mar; 138(10):3270-3. PubMed ID: 26926708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic models for the active site of [Fe]hydrogenase featuring an acylmethyl(hydroxymethyl)pyridine ligand.
    Song LC; Xie ZJ; Wang MM; Zhao GY; Song HB
    Inorg Chem; 2012 Jul; 51(14):7466-8. PubMed ID: 22757742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational investigation of [FeFe]-hydrogenase models: characterization of singly and doubly protonated intermediates and mechanistic insights.
    Huynh MT; Wang W; Rauchfuss TB; Hammes-Schiffer S
    Inorg Chem; 2014 Oct; 53(19):10301-11. PubMed ID: 25207842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bridging-hydride influence on the electronic structure of an [FeFe] hydrogenase active-site model complex revealed by XAES-DFT.
    Leidel N; Hsieh CH; Chernev P; Sigfridsson KG; Darensbourg MY; Haumann M
    Dalton Trans; 2013 Jun; 42(21):7539-54. PubMed ID: 23446996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of [Fe]-hydrogenase using model complexes.
    Shima S; Chen D; Xu T; Wodrich MD; Fujishiro T; Schultz KM; Kahnt J; Ataka K; Hu X
    Nat Chem; 2015 Dec; 7(12):995-1002. PubMed ID: 26587715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on Chemical Reactivity and Electrocatalysis of Two Acylmethyl(hydroxymethyl)pyridine Ligand-Containing [Fe]-Hydrogenase Models (2-COCH
    Song LC; Zhu L; Hu FQ; Wang YX
    Inorg Chem; 2017 Dec; 56(24):15216-15230. PubMed ID: 29188999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaffold-Based Functional Models of [Fe]-Hydrogenase (Hmd): Building the Bridge between Biological Structure and Molecular Function.
    Kerns SA; Rose MJ
    Acc Chem Res; 2020 Aug; 53(8):1637-1647. PubMed ID: 32786339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbene-pyridine chelating 2Fe2S hydrogenase model complexes as highly active catalysts for the electrochemical reduction of protons from weak acid (HOAc).
    Duan L; Wang M; Li P; Na Y; Wang N; Sun L
    Dalton Trans; 2007 Apr; (13):1277-83. PubMed ID: 17372642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascendancy of Nitrogen Heterocycles in the Computationally Designed Mn(I)PNN Pincer Catalysts on the Hydrogenation of Carbon Dioxide to Methanol.
    Avasare VD
    Inorg Chem; 2022 Jan; 61(4):1851-1868. PubMed ID: 34714058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO
    Shiekh BA; Kaur D; Kumar S
    Phys Chem Chem Phys; 2019 Oct; 21(38):21370-21380. PubMed ID: 31531468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current State of [Fe]-Hydrogenase and Its Biomimetic Models.
    Wang C; Lai Z; Huang G; Pan HJ
    Chemistry; 2022 Oct; 28(57):e202201499. PubMed ID: 35785501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Thiolate Ligation in Monoiron Hydrogenase (Hmd): Stability of the {Fe(CO)
    Xie ZL; Pennington DL; Boucher DG; Lo J; Rose MJ
    Inorg Chem; 2018 Aug; 57(16):10028-10039. PubMed ID: 30070112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.