These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35345940)

  • 1. Conditioning of metal surfaces enhances
    Tuck B; Watkin E; Somers A; Forsyth M; Machuca LL
    Biofouling; 2022 Mar; 38(3):207-222. PubMed ID: 35345940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion.
    Javed MA; Neil WC; Stoddart PR; Wade SA
    Biofouling; 2016; 32(1):109-22. PubMed ID: 26785935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a novel, multi-functional inhibitor compound for prevention of biofilm formation on carbon steel in marine environments.
    Tuck B; Watkin E; Forsyth M; Somers A; Ghorbani M; Machuca LL
    Sci Rep; 2021 Aug; 11(1):15697. PubMed ID: 34344924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of biofilms in the corrosion of steel in marine environments.
    Procópio L
    World J Microbiol Biotechnol; 2019 Apr; 35(5):73. PubMed ID: 31037431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrosion of Carbon Steel by
    Salgar-Chaparro SJ; Tarazona J; Machuca LL
    Front Bioeng Biotechnol; 2022; 10():825776. PubMed ID: 35360385
    [No Abstract]   [Full Text] [Related]  

  • 6. Evaluation of various metallic coatings on steel to mitigate biofilm formation.
    Kanematsu H; Ikigai H; Yoshitake M
    Int J Mol Sci; 2009 Feb; 10(2):559-571. PubMed ID: 19333421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale characteristics of conditioning film development on photobioreactor materials: influence on the initial adhesion and biofilm formation by a cyanobacterium.
    Talluri SNL; Winter RM; Salem DR
    Biofouling; 2021 Aug; 37(7):777-790. PubMed ID: 34455869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of bacterial biofilm formation using marine natural antimicrobial peptides.
    Doiron K; Beaulieu L; St-Louis R; Lemarchand K
    Colloids Surf B Biointerfaces; 2018 Jul; 167():524-530. PubMed ID: 29729630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early detection of oxidized surfaces using Shewanella oneidensis MR-1 as a tool.
    Waters MS; Salas EC; Goodman SD; Udwadia FE; Nealson KH
    Biofouling; 2009; 25(2):163-72. PubMed ID: 19165644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial iron respiration can protect steel from corrosion.
    Dubiel M; Hsu CH; Chien CC; Mansfeld F; Newman DK
    Appl Environ Microbiol; 2002 Mar; 68(3):1440-5. PubMed ID: 11872499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced extracellular electron transfer mediators in a sulfate-reducing biofilm.
    Krantz GP; Lucas K; Wunderlich EL; Hoang LT; Avci R; Siuzdak G; Fields MW
    Biofouling; 2019 Jul; 35(6):669-683. PubMed ID: 31402749
    [No Abstract]   [Full Text] [Related]  

  • 12. Conditioning film formation and its influence on the initial adhesion and biofilm formation by a cyanobacterium on photobioreactor materials.
    Talluri SNL; Winter RM; Salem DR
    Biofouling; 2020 Feb; 36(2):183-199. PubMed ID: 32281883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon steel corrosion by bacteria from failed seal rings at an offshore facility.
    Salgar-Chaparro SJ; Darwin A; Kaksonen AH; Machuca LL
    Sci Rep; 2020 Jul; 10(1):12287. PubMed ID: 32703991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of marine Shewanella putrefaciens and mediated calcium deposition on Q235 carbon steel corrosion.
    Lou Y; Chang W; Huang L; Chen X; Hao X; Qian H; Zhang D
    Bioelectrochemistry; 2024 Jun; 157():108657. PubMed ID: 38335713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated Corrosion of 316L Stainless Steel Caused by
    Kalnaowakul P; Xu D; Rodchanarowan A
    ACS Appl Bio Mater; 2020 Apr; 3(4):2185-2192. PubMed ID: 35025270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm formation and its effects on microbiologically influenced corrosion of carbon steel in oilfield injection water via electrochemical techniques and scanning electron microscopy.
    Giorgi-Pérez AM; Arboleda-Ordoñez AM; Villamizar-Suárez W; Cardeñosa-Mendoza M; Jaimes-Prada R; Rincón-Orozco B; Niño-Gómez ME
    Bioelectrochemistry; 2021 Oct; 141():107868. PubMed ID: 34126368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of metal microstructure on the initial attachment of Escherichia coli to 1010 carbon steel.
    Javed MA; Stoddart PR; McArthur SL; Wade SA
    Biofouling; 2013 Sep; 29(8):939-52. PubMed ID: 23906317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of microbial extracellular electron transfer corrosion of marine structural steel with multiple alloy elements.
    Lu S; He Y; Xu R; Wang N; Chen S; Dou W; Cheng X; Liu G
    Bioelectrochemistry; 2023 Jun; 151():108377. PubMed ID: 36731176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment.
    Wikieł AJ; Datsenko I; Vera M; Sand W
    Bioelectrochemistry; 2014 Jun; 97():52-60. PubMed ID: 24238898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marine Biofilms with Significant Corrosion Inhibition Performance by Secreting Extracellular Polymeric Substances.
    Li Z; Zhou J; Yuan X; Xu Y; Xu D; Zhang D; Feng D; Wang F
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):47272-47282. PubMed ID: 34570482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.