These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35346020)

  • 1. Statistical inference for a quasi birth-death model of RNA transcription.
    de Gunst M; Mandjes M; Sollie B
    BMC Bioinformatics; 2022 Mar; 23(1):105. PubMed ID: 35346020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marginal likelihood estimation of negative binomial parameters with applications to RNA-seq data.
    León-Novelo L; Fuentes C; Emerson S
    Biostatistics; 2017 Oct; 18(4):637-650. PubMed ID: 28369228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Poisson Log-Normal Model for Constructing Gene Covariation Network Using RNA-seq Data.
    Choi Y; Coram M; Peng J; Tang H
    J Comput Biol; 2017 Jul; 24(7):721-731. PubMed ID: 28557607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sample size calculation based on exact test for assessing differential expression analysis in RNA-seq data.
    Li CI; Su PF; Shyr Y
    BMC Bioinformatics; 2013 Dec; 14():357. PubMed ID: 24314022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NBLDA: negative binomial linear discriminant analysis for RNA-Seq data.
    Dong K; Zhao H; Tong T; Wan X
    BMC Bioinformatics; 2016 Sep; 17(1):369. PubMed ID: 27623864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using non-uniform read distribution models to improve isoform expression inference in RNA-Seq.
    Wu Z; Wang X; Zhang X
    Bioinformatics; 2011 Feb; 27(4):502-8. PubMed ID: 21169371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sample size calculations for the differential expression analysis of RNA-seq data using a negative binomial regression model.
    Li X; Wu D; Cooper NGF; Rai SN
    Stat Appl Genet Mol Biol; 2019 Jan; 18(1):. PubMed ID: 30667368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proportional likelihood ratio mixed model for discrete longitudinal data.
    Wu H; Jones MP
    Stat Med; 2021 Apr; 40(9):2272-2285. PubMed ID: 33588517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collaborative double robust targeted maximum likelihood estimation.
    van der Laan MJ; Gruber S
    Int J Biostat; 2010 May; 6(1):Article 17. PubMed ID: 20628637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BALLI: Bartlett-adjusted likelihood-based linear model approach for identifying differentially expressed genes with RNA-seq data.
    Park K; An J; Gim J; Seo M; Lee W; Park T; Won S
    BMC Genomics; 2019 Jul; 20(1):540. PubMed ID: 31266443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Birth/birth-death processes and their computable transition probabilities with biological applications.
    Ho LST; Xu J; Crawford FW; Minin VN; Suchard MA
    J Math Biol; 2018 Mar; 76(4):911-944. PubMed ID: 28741177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience.
    Fengler A; Govindarajan LN; Chen T; Frank MJ
    Elife; 2021 Apr; 10():. PubMed ID: 33821788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PLNseq: a multivariate Poisson lognormal distribution for high-throughput matched RNA-sequencing read count data.
    Zhang H; Xu J; Jiang N; Hu X; Luo Z
    Stat Med; 2015 Apr; 34(9):1577-89. PubMed ID: 25641202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved variational Bayes inference for transcript expression estimation.
    Papastamoulis P; Hensman J; Glaus P; Rattray M
    Stat Appl Genet Mol Biol; 2014 Apr; 13(2):203-16. PubMed ID: 24413218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and accurate approximate inference of transcript expression from RNA-seq data.
    Hensman J; Papastamoulis P; Glaus P; Honkela A; Rattray M
    Bioinformatics; 2015 Dec; 31(24):3881-9. PubMed ID: 26315907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BADGE: a novel Bayesian model for accurate abundance quantification and differential analysis of RNA-Seq data.
    Gu J; Wang X; Halakivi-Clarke L; Clarke R; Xuan J
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S6. PubMed ID: 25252852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling RNA degradation for RNA-Seq with applications.
    Wan L; Yan X; Chen T; Sun F
    Biostatistics; 2012 Sep; 13(4):734-47. PubMed ID: 22353193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast maximum likelihood estimation using continuous-time neural point process models.
    Lepage KQ; MacDonald CJ
    J Comput Neurosci; 2015 Jun; 38(3):499-519. PubMed ID: 25788412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approximate inference of gene regulatory network models from RNA-Seq time series data.
    Thorne T
    BMC Bioinformatics; 2018 Apr; 19(1):127. PubMed ID: 29642837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.