These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35346124)

  • 1. Development and quantitative assessment of deep learning-based image enhancement for optical coherence tomography.
    Zhao X; Lv B; Meng L; Zhou X; Wang D; Zhang W; Wang E; Lv C; Xie G; Chen Y
    BMC Ophthalmol; 2022 Mar; 22(1):139. PubMed ID: 35346124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
    Sakamoto A; Hangai M; Yoshimura N
    Ophthalmology; 2008 Jun; 115(6):1071-1078.e7. PubMed ID: 18061270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving cerebral microvascular image quality of optical coherence tomography angiography with deep learning-based segmentation.
    Fan F; Zhang J; Zhu L; Ma Z; Zhu J
    J Biophotonics; 2021 Nov; 14(11):e202100171. PubMed ID: 34382744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Denoising of Optical Coherence Tomography Images in Ophthalmology Using Deep Learning: A Systematic Review.
    Ahmed H; Zhang Q; Donnan R; Alomainy A
    J Imaging; 2024 Apr; 10(4):. PubMed ID: 38667984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Visualization of Retinal Microvasculature in Optical Coherence Tomography Angiography Imaging via Deep Learning.
    Kadomoto S; Uji A; Muraoka Y; Akagi T; Tsujikawa A
    J Clin Med; 2020 May; 9(5):. PubMed ID: 32370282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning-based image enhancement in optical coherence tomography by exploiting interference fringe.
    Lee W; Nam HS; Seok JY; Oh WY; Kim JW; Yoo H
    Commun Biol; 2023 Apr; 6(1):464. PubMed ID: 37117279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of frame-averaging algorithms in OCT image analysis.
    Wu W; Tan O; Pappuru RR; Duan H; Huang D
    Ophthalmic Surg Lasers Imaging Retina; 2013; 44(2):168-75. PubMed ID: 23510042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head.
    Devalla SK; Subramanian G; Pham TH; Wang X; Perera S; Tun TA; Aung T; Schmetterer L; Thiéry AH; Girard MJA
    Sci Rep; 2019 Oct; 9(1):14454. PubMed ID: 31595006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple enface image averaging for enhanced optical coherence tomography angiography imaging.
    Uji A; Balasubramanian S; Lei J; Baghdasaryan E; Al-Sheikh M; Borrelli E; Sadda SR
    Acta Ophthalmol; 2018 Nov; 96(7):e820-e827. PubMed ID: 29855147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DENOISING SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY VOLUMETRIC SCANS USING A DEEP LEARNING MODEL.
    Ledesma-Gil G; Mao Z; Liu J; Spaide RF
    Retina; 2022 Mar; 42(3):450-455. PubMed ID: 35175017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A diagnostic information based framework for super-resolution and quality assessment of retinal OCT images.
    Das V; Dandapat S; Bora PK
    Comput Med Imaging Graph; 2021 Dec; 94():101997. PubMed ID: 34678643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.
    Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA
    Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning.
    Shah M; Roomans Ledo A; Rittscher J
    Acta Ophthalmol; 2020 Sep; 98(6):e715-e721. PubMed ID: 31981283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform.
    Chitchian S; Mayer MA; Boretsky AR; van Kuijk FJ; Motamedi M
    J Biomed Opt; 2012 Nov; 17(11):116009. PubMed ID: 23117804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning-based framework for retinal fundus image enhancement.
    Lee KG; Song SJ; Lee S; Yu HG; Kim DI; Lee KM
    PLoS One; 2023; 18(3):e0282416. PubMed ID: 36928209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of image averaging on optical coherence tomography angiography data in eyes with branch retinal vein occlusion.
    Uji A; Sadda SR; Muraoka Y; Kadomoto S; Ooto S; Murakami T; Akagi T; Miyata M; Tsujikawa A
    Graefes Arch Clin Exp Ophthalmol; 2020 Aug; 258(8):1639-1648. PubMed ID: 32361802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal optical coherence tomography image enhancement via deep learning.
    Halupka KJ; Antony BJ; Lee MH; Lucy KA; Rai RS; Ishikawa H; Wollstein G; Schuman JS; Garnavi R
    Biomed Opt Express; 2018 Dec; 9(12):6205-6221. PubMed ID: 31065423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of integrated multiple image averaging on OCT angiography image quality and quantitative parameters.
    Lauermann JL; Xu Y; Heiduschka P; Treder M; Alten F; Eter N; Alnawaiseh M
    Graefes Arch Clin Exp Ophthalmol; 2019 Dec; 257(12):2623-2629. PubMed ID: 31630231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.