BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35346401)

  • 1. Harnessing thermal plasticity to enhance the performance of mass-reared insects: opportunities and challenges.
    Sinclair BJ; Sørensen JG; Terblanche JS
    Bull Entomol Res; 2022 Aug; 112(4):441-450. PubMed ID: 35346401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: Tortricidae): implications for pest control and the sterile insect release programme.
    Chidawanyika F; Terblanche JS
    Evol Appl; 2011 Jul; 4(4):534-44. PubMed ID: 25568003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meta-analysis reveals weak but pervasive plasticity in insect thermal limits.
    Weaving H; Terblanche JS; Pottier P; English S
    Nat Commun; 2022 Sep; 13(1):5292. PubMed ID: 36075913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Fitness and Economic Benefits of Rearing the Parasitoid Telenomus podisi Under Fluctuating Temperature Regime.
    Castellanos NL; Bueno AF; Haddi K; Silveira EC; Rodrigues HS; Hirose E; Smagghe G; Oliveira EE
    Neotrop Entomol; 2019 Dec; 48(6):934-948. PubMed ID: 31728908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac plasticity influences aerobic performance and thermal tolerance in a tropical, freshwater fish at elevated temperatures.
    Nyboer EA; Chapman LJ
    J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29895683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection on phenotypic plasticity favors thermal canalization.
    Svensson EI; Gomez-Llano M; Waller JT
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29767-29774. PubMed ID: 33168720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paradoxical acclimation responses in the thermal performance of insect immunity.
    Ferguson LV; Heinrichs DE; Sinclair BJ
    Oecologia; 2016 May; 181(1):77-85. PubMed ID: 26846428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of developmental temperatures on Aphidius colemani host-foraging behavior at high temperature.
    Jerbi-Elayed M; Tougeron K; Grissa-Lebdi K; Hance T
    J Therm Biol; 2022 Jan; 103():103140. PubMed ID: 35027198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An invitation to measure insect cold tolerance: Methods, approaches, and workflow.
    Sinclair BJ; Coello Alvarado LE; Ferguson LV
    J Therm Biol; 2015 Oct; 53():180-97. PubMed ID: 26590471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms underpinning the beneficial effects of fluctuating thermal regimes in insect cold tolerance.
    Colinet H; Rinehart JP; Yocum GD; Greenlee KJ
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 30037966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insects in fluctuating thermal environments.
    Colinet H; Sinclair BJ; Vernon P; Renault D
    Annu Rev Entomol; 2015 Jan; 60():123-40. PubMed ID: 25341105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of experienced thermal history: Effect of acclimation temperatures on the high-temperature tolerance and growth performance of juvenile marbled flounder.
    Sakurai G; Takahashi S; Yoshida Y; Yoshida H; Shoji J; Tomiyama T
    J Therm Biol; 2021 Apr; 97():102831. PubMed ID: 33863425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence?
    Bowler K; Terblanche JS
    Biol Rev Camb Philos Soc; 2008 Aug; 83(3):339-55. PubMed ID: 18979595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonistic Responses of Exposure to Sublethal Temperatures: Adaptive Phenotypic Plasticity Coincides with a Reduction in Organismal Performance.
    Gilbert AL; Miles DB
    Am Nat; 2019 Sep; 194(3):344-355. PubMed ID: 31553209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive genetic covariance and limited thermal tolerance constrain tropical insect responses to global warming.
    García-Robledo C; Baer CS
    J Evol Biol; 2021 Sep; 34(9):1432-1446. PubMed ID: 34265126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes.
    Sasmita HI; Tu WC; Bong LJ; Neoh KB
    Parasit Vectors; 2019 Dec; 12(1):578. PubMed ID: 31823817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survive a Warming Climate: Insect Responses to Extreme High Temperatures.
    Ma CS; Ma G; Pincebourde S
    Annu Rev Entomol; 2021 Jan; 66():163-184. PubMed ID: 32870704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.
    Schou MF; Loeschcke V; Kristensen TN
    PLoS One; 2015; 10(6):e0130307. PubMed ID: 26075607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental Temperature Affects Life-History Traits and Heat Tolerance in the Aphid Parasitoid
    Jerbi-Elayed M; Foray V; Tougeron K; Grissa-Lebdi K; Hance T
    Insects; 2021 Sep; 12(10):. PubMed ID: 34680621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae).
    Schoville SD; Slatyer RA; Bergdahl JC; Valdez GA
    J Insect Physiol; 2015 Jul; 78():55-61. PubMed ID: 25956197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.