These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35346462)

  • 1. Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle.
    Negussie E; González-Recio O; Battagin M; Bayat AR; Boland T; de Haas Y; Garcia-Rodriguez A; Garnsworthy PC; Gengler N; Kreuzer M; Kuhla B; Lassen J; Peiren N; Pszczola M; Schwarm A; Soyeurt H; Vanlierde A; Yan T; Biscarini F
    J Dairy Sci; 2022 Jun; 105(6):5124-5140. PubMed ID: 35346462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual milk fatty acids are potential predictors of enteric methane emissions from dairy cows fed a wide range of diets: Approach by meta-analysis.
    Bougouin A; Appuhamy JADRN; Ferlay A; Kebreab E; Martin C; Moate PJ; Benchaar C; Lund P; Eugène M
    J Dairy Sci; 2019 Nov; 102(11):10616-10631. PubMed ID: 31477298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks.
    Shadpour S; Chud TCS; Hailemariam D; Plastow G; Oliveira HR; Stothard P; Lassen J; Miglior F; Baes CF; Tulpan D; Schenkel FS
    J Dairy Sci; 2022 Oct; 105(10):8272-8285. PubMed ID: 36055858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the effects of heat stress in animal performance and enteric methane emissions in lactating dairy cows.
    Souza VC; Moraes LE; Baumgard LH; Santos JEP; Mueller ND; Rhoads RP; Kebreab E
    J Dairy Sci; 2023 Jul; 106(7):4725-4737. PubMed ID: 37225587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting enteric methane emission of dairy cows with milk Fourier-transform infrared spectra and gas chromatography-based milk fatty acid profiles.
    van Gastelen S; Mollenhorst H; Antunes-Fernandes EC; Hettinga KA; van Burgsteden GG; Dijkstra J; Rademaker JLW
    J Dairy Sci; 2018 Jun; 101(6):5582-5598. PubMed ID: 29550122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of methane per unit of dry matter intake in growing and finishing cattle from the ratio of dietary concentrations of starch to neutral detergent fiber alone or in combination with dietary concentration of ether extract.
    Galyean ML; Hales KE
    J Anim Sci; 2022 Sep; 100(9):. PubMed ID: 35894938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane prediction based on individual or groups of milk fatty acids for dairy cows fed rations with or without linseed.
    Engelke SW; Daş G; Derno M; Tuchscherer A; Wimmers K; Rychlik M; Kienberger H; Berg W; Kuhla B; Metges CC
    J Dairy Sci; 2019 Feb; 102(2):1788-1802. PubMed ID: 30594371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enteric Methane Emissions Prediction in Dairy Cattle and Effects of Monensin on Methane Emissions: A Meta-Analysis.
    Marumo JL; LaPierre PA; Van Amburgh ME
    Animals (Basel); 2023 Apr; 13(8):. PubMed ID: 37106954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database.
    Niu M; Kebreab E; Hristov AN; Oh J; Arndt C; Bannink A; Bayat AR; Brito AF; Boland T; Casper D; Crompton LA; Dijkstra J; Eugène MA; Garnsworthy PC; Haque MN; Hellwing ALF; Huhtanen P; Kreuzer M; Kuhla B; Lund P; Madsen J; Martin C; McClelland SC; McGee M; Moate PJ; Muetzel S; Muñoz C; O'Kiely P; Peiren N; Reynolds CK; Schwarm A; Shingfield KJ; Storlien TM; Weisbjerg MR; Yáñez-Ruiz DR; Yu Z
    Glob Chang Biol; 2018 Aug; 24(8):3368-3389. PubMed ID: 29450980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting dry matter intake in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks.
    Shadpour S; Chud TCS; Hailemariam D; Oliveira HR; Plastow G; Stothard P; Lassen J; Baldwin R; Miglior F; Baes CF; Tulpan D; Schenkel FS
    J Dairy Sci; 2022 Oct; 105(10):8257-8271. PubMed ID: 36055837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect predictions of enteric methane daily production, yield, and intensity per unit of milk and cheese, from fatty acids and milk Fourier-transform infrared spectra.
    Bittante G; Cipolat-Gotet C
    J Dairy Sci; 2018 Aug; 101(8):7219-7235. PubMed ID: 29803412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between milk metabolome and methane emission of Holstein Friesian dairy cows: Metabolic interpretation and prediction potential.
    van Gastelen S; Antunes-Fernandes EC; Hettinga KA; Dijkstra J
    J Dairy Sci; 2018 Mar; 101(3):2110-2126. PubMed ID: 29290428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand.
    Appuhamy JA; France J; Kebreab E
    Glob Chang Biol; 2016 Sep; 22(9):3039-56. PubMed ID: 27148862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the dry matter intake of grazing dairy cows using infrared reflectance spectroscopy analysis.
    Lahart B; McParland S; Kennedy E; Boland TM; Condon T; Williams M; Galvin N; McCarthy B; Buckley F
    J Dairy Sci; 2019 Oct; 102(10):8907-8918. PubMed ID: 31351717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting methane emissions of lactating Danish Holstein cows using Fourier transform mid-infrared spectroscopy of milk.
    Shetty N; Difford G; Lassen J; Løvendahl P; Buitenhuis AJ
    J Dairy Sci; 2017 Nov; 100(11):9052-9060. PubMed ID: 28918149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions.
    Negussie E; de Haas Y; Dehareng F; Dewhurst RJ; Dijkstra J; Gengler N; Morgavi DP; Soyeurt H; van Gastelen S; Yan T; Biscarini F
    J Dairy Sci; 2017 Apr; 100(4):2433-2453. PubMed ID: 28161178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of concentrate feed level on methane emissions from grazing dairy cows.
    Jiao HP; Dale AJ; Carson AF; Murray S; Gordon AW; Ferris CP
    J Dairy Sci; 2014 Nov; 97(11):7043-53. PubMed ID: 25173463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short communication: Development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers.
    Vanlierde A; Soyeurt H; Gengler N; Colinet FG; Froidmont E; Kreuzer M; Grandl F; Bell M; Lund P; Olijhoek DW; Eugène M; Martin C; Kuhla B; Dehareng F
    J Dairy Sci; 2018 Aug; 101(8):7618-7624. PubMed ID: 29753478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Looking for high-production and sustainable diets for lactating cows: A survey in Italy.
    Gislon G; Bava L; Colombini S; Zucali M; Crovetto GM; Sandrucci A
    J Dairy Sci; 2020 May; 103(5):4863-4873. PubMed ID: 32113778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-Nitrooxypropanol decreases methane emissions and increases hydrogen emissions of early lactation dairy cows, with associated changes in nutrient digestibility and energy metabolism.
    van Gastelen S; Dijkstra J; Binnendijk G; Duval SM; Heck JML; Kindermann M; Zandstra T; Bannink A
    J Dairy Sci; 2020 Sep; 103(9):8074-8093. PubMed ID: 32600756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.