These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 35346682)
1. Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles. Jia Y; Kong L; Zhang B; Fu X; Huang Q Int J Biol Macromol; 2022 May; 207():791-800. PubMed ID: 35346682 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Pickering emulsion by SCFAs-modified debranched starch and a potent for delivering encapsulated bioactive compound. Wang R; Li M; Liu M; Wang A; Strappe P; Blanchard C; Zhou Z Int J Biol Macromol; 2023 Mar; 231():123164. PubMed ID: 36621731 [TBL] [Abstract][Full Text] [Related]
3. Characterization of quinoa starch nanoparticles as a stabilizer for oil in water Pickering emulsion. Jiang F; Zhu Y; Hu WX; Li M; Liu Y; Feng J; Lv X; Yu X; Du SK Food Chem; 2023 Nov; 427():136697. PubMed ID: 37379746 [TBL] [Abstract][Full Text] [Related]
4. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size. Ge S; Xiong L; Li M; Liu J; Yang J; Chang R; Liang C; Sun Q Food Chem; 2017 Nov; 234():339-347. PubMed ID: 28551245 [TBL] [Abstract][Full Text] [Related]
5. Ferulic acid loaded pickering emulsions stabilized by resistant starch nanoparticles using ultrasonication: Characterization, in vitro release and nutraceutical potential. Noor N; Gani A; Jhan F; Ashraf Shah M; Ul Ashraf Z Ultrason Sonochem; 2022 Mar; 84():105967. PubMed ID: 35279632 [TBL] [Abstract][Full Text] [Related]
6. Water-in-oil Pickering emulsion polymerization of N-isopropyl acrylamide using starch-based nanoparticles as emulsifier. Zhai K; Pei X; Wang C; Deng Y; Tan Y; Bai Y; Zhang B; Xu K; Wang P Int J Biol Macromol; 2019 Jun; 131():1032-1037. PubMed ID: 30898598 [TBL] [Abstract][Full Text] [Related]
7. Formation and properties of starch-palmitic acid complex nanoparticles and their influence on Pickering emulsions. Yan X; Diao M; Li C; Lu C; Zhao P; Zhang T Int J Biol Macromol; 2022 Apr; 204():685-691. PubMed ID: 35134453 [TBL] [Abstract][Full Text] [Related]
8. Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols. Shao P; Zhang H; Niu B; Jin W Int J Biol Macromol; 2018 Oct; 118(Pt B):2032-2039. PubMed ID: 30021133 [TBL] [Abstract][Full Text] [Related]
9. Acetalized starch-based nanoparticles stabilized acid-sensitive Pickering emulsion as a potential antitumor drug carrier. Zhang Q; Zhao Q; Zhu B; Chen R; Zhou Y; Pei X; Zhou H; An H; Tan Y; Chen C Int J Biol Macromol; 2023 Jul; 244():125393. PubMed ID: 37331543 [TBL] [Abstract][Full Text] [Related]
10. Stabilization of oil-in-water high internal phase emulsions with octenyl succinic acid starch and beeswax oleogel. Yu J; Zhang Y; Zhang R; Gao Y; Mao L Int J Biol Macromol; 2024 Jan; 254(Pt 1):127815. PubMed ID: 37918613 [TBL] [Abstract][Full Text] [Related]
11. Pickering emulsion stabilized by amphiphilic pH-sensitive starch nanoparticles as therapeutic containers. Sufi-Maragheh P; Nikfarjam N; Deng Y; Taheri-Qazvini N Colloids Surf B Biointerfaces; 2019 Sep; 181():244-251. PubMed ID: 31151037 [TBL] [Abstract][Full Text] [Related]
12. Pickering emulsions stabilized by starch nanocrystals prepared from various crystalline starches by ultrasonic assisted acetic acid: Stability and delivery of curcumin. Zhu Y; Du C; Jiang F; Hu W; Yu X; Du SK Int J Biol Macromol; 2024 May; 267(Pt 1):131217. PubMed ID: 38552683 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of Pickering emulsions using starch nanocrystals treated with alkaline solution. Wang K; Hong Y; Gu Z; Cheng L; Li Z; Li C Int J Biol Macromol; 2020 Jul; 155():273-285. PubMed ID: 32234443 [TBL] [Abstract][Full Text] [Related]
14. Simple method for fabrication of high internal phase emulsions solely using novel pea protein isolate nanoparticles: Stability of ionic strength and temperature. Li XL; Liu WJ; Xu BC; Zhang B Food Chem; 2022 Feb; 370():130899. PubMed ID: 34509149 [TBL] [Abstract][Full Text] [Related]
15. Characterization of acetylated starch nanoparticles for potential use as an emulsion stabilizer. Yao X; Lin R; Liang Y; Jiao S; Zhong L Food Chem; 2023 Jan; 400():133873. PubMed ID: 36087477 [TBL] [Abstract][Full Text] [Related]
16. Comparison of properties and application of starch nanoparticles optimized prepared from different crystalline starches. Du C; Jiang F; Hu W; Ge W; Yu X; Du SK Int J Biol Macromol; 2023 Apr; 235():123735. PubMed ID: 36806775 [TBL] [Abstract][Full Text] [Related]
17. pH-Responsive Pickering high internal phase emulsions stabilized by Waterborne polyurethane. Wu J; Guan X; Wang C; Ngai T; Lin W J Colloid Interface Sci; 2022 Mar; 610():994-1004. PubMed ID: 34865740 [TBL] [Abstract][Full Text] [Related]
18. Rheology, stability, antioxidant properties, and curcumin release of oil-in-water Pickering emulsions stabilized by rice starch nanoparticles. Kamwilaisak K; Rittiwut K; Jutakridsada P; Iamamorphanth W; Pimsawat N; Knijnenburg JTN; Theerakulpisut S Int J Biol Macromol; 2022 Aug; 214():370-380. PubMed ID: 35691427 [TBL] [Abstract][Full Text] [Related]
19. Waxy maize starch nanoparticles incorporated tea polyphenols to stabilize Pickering emulsion and inhibit oil oxidation. Wang R; Zhou J Carbohydr Polym; 2022 Nov; 296():119991. PubMed ID: 36088014 [TBL] [Abstract][Full Text] [Related]
20. Pickering emulsions stabilized by media-milled starch particles. Lu X; Xiao J; Huang Q Food Res Int; 2018 Mar; 105():140-149. PubMed ID: 29433201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]