These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35346741)

  • 21. Evaluation and Integration of Geochemical Indicators for Detecting Trace Levels of Coal Fly Ash in Soils.
    Wang Z; Coyte RM; Cowan EA; Stapleton HM; Dwyer GS; Vengosh A
    Environ Sci Technol; 2021 Aug; 55(15):10387-10397. PubMed ID: 34282893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental risks of farmed and barren alkaline coal ash landfills in Tuzla, Bosnia and Herzegovina.
    Dellantonio A; Fitz WJ; Custovic H; Repmann F; Schneider BU; Grünewald H; Gruber V; Zgorelec Z; Zerem N; Carter C; Markovic M; Puschenreiter M; Wenzel WW
    Environ Pollut; 2008 Jun; 153(3):677-86. PubMed ID: 17949870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potentially toxic elements in fly ash dependently of applied technology of hard coal combustion.
    Smolka-Danielowska D; Fiedor D
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25091-25097. PubMed ID: 29938326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for unmonitored coal ash spills in Sutton Lake, North Carolina: Implications for contamination of lake ecosystems.
    Vengosh A; Cowan EA; Coyte RM; Kondash AJ; Wang Z; Brandt JE; Dwyer GS
    Sci Total Environ; 2019 Oct; 686():1090-1103. PubMed ID: 31200305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potentially toxic elements in lignite and its combustion residues from a power plant.
    Ram LC; Masto RE; Srivastava NK; George J; Selvi VA; Das TB; Pal SK; Maity S; Mohanty D
    Environ Monit Assess; 2015 Jan; 187(1):4148. PubMed ID: 25446718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Risk assessment of heavy metals from combustion of pelletized municipal sewage sludge.
    Xiao Z; Yuan X; Leng L; Jiang L; Chen X; Zhibin W; Xin P; Jiachao Z; Zeng G
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3934-42. PubMed ID: 26503007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Source apportionment based on lead isotope ratios: Could domestic dog's blood lead be used to identify the level and sources of lead pollution in children?
    Chen X; Duan X; Cao S; Wen D; Zhang Y; Wang B; Jia C
    Chemosphere; 2022 Dec; 308(Pt 1):136197. PubMed ID: 36064012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of heavy metal leaching from coal ash-versus conventional concrete monoliths and debris.
    Gwenzi W; Mupatsi NM
    Waste Manag; 2016 Mar; 49():114-123. PubMed ID: 26764133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Respiratory Health in Adults Residing Near a Coal-Burning Power Plant with Coal Ash Storage Facilities: A Cross-Sectional Epidemiological Study.
    Hagemeyer AN; Sears CG; Zierold KM
    Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31569347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.
    Nilsson M; Andreas L; Lagerkvist A
    Waste Manag; 2016 May; 51():97-104. PubMed ID: 26786400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reclamation and revegetation of fly ash disposal sites - Challenges and research needs.
    Haynes RJ
    J Environ Manage; 2009 Jan; 90(1):43-53. PubMed ID: 18706753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Apportionment of sources of heavy metals to agricultural soils using isotope fingerprints and multivariate statistical analyses.
    Wang P; Li Z; Liu J; Bi X; Ning Y; Yang S; Yang X
    Environ Pollut; 2019 Jun; 249():208-216. PubMed ID: 30893633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Speciation of major and trace elements leached from coal fly ash and the kinetics involved.
    Hailu SL; McCrindle RI; Seopela MP; Combrinck S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(12):1186-1196. PubMed ID: 31271099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attenuation of trace elements in coal fly ash leachates by surfactant-modified zeolite.
    Neupane G; Donahoe RJ
    J Hazard Mater; 2012 Aug; 229-230():201-8. PubMed ID: 22721834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of coal combustion fly ash use in concrete on the mass transport release of constituents of potential concern.
    Garrabrants AC; Kosson DS; DeLapp R; van der Sloot HA
    Chemosphere; 2014 May; 103():131-9. PubMed ID: 24359922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stabilization of heavy metals in municipal solid waste incineration fly ash via hydrothermal treatment with coal fly ash.
    Zhang Z; Wang Y; Zhang Y; Shen B; Ma J; Liu L
    Waste Manag; 2022 May; 144():285-293. PubMed ID: 35427900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Chelating stabilization of heavy metals in fly ash from municipal solid waste incinerators for co-disposal in sanitary landfill].
    Ye TM; Wang W; Gao XB; Wan X
    Huan Jing Ke Xue; 2008 Apr; 29(4):1119-23. PubMed ID: 18637372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disposal of coal combustion residues in terrestrial systems: contamination and risk management.
    Dellantonio A; Fitz WJ; Repmann F; Wenzel WW
    J Environ Qual; 2010; 39(3):761-75. PubMed ID: 20400572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Legislative and environmental issues on the use of ash from coal and municipal sewage sludge co-firing as construction material.
    Cenni R; Janisch B; Spliethoff H; Hein KR
    Waste Manag; 2001; 21(1):17-31. PubMed ID: 11150129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MSW fly ash stabilized with coal ash for geotechnical application.
    Kamon M; Katsumi T; Sano Y
    J Hazard Mater; 2000 Sep; 76(2-3):265-83. PubMed ID: 10936538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.