BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35346870)

  • 21. A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure.
    Chen Y; Liu Q; Ma J; Yang S; Wu Y; An Y
    Chemosphere; 2020 Dec; 260():127633. PubMed ID: 32683015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental exposure to organophosphate flame retardants elicits overt toxicity and alters behavior in early life stage zebrafish (Danio rerio).
    Dishaw LV; Hunter DL; Padnos B; Padilla S; Stapleton HM
    Toxicol Sci; 2014 Dec; 142(2):445-54. PubMed ID: 25239634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental exposure to organophosphate flame retardants causes behavioral effects in larval and adult zebrafish.
    Oliveri AN; Bailey JM; Levin ED
    Neurotoxicol Teratol; 2015; 52(Pt B):220-7. PubMed ID: 26344674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance.
    Alzualde A; Behl M; Sipes NS; Hsieh JH; Alday A; Tice RR; Paules RS; Muriana A; Quevedo C
    Neurotoxicol Teratol; 2018; 70():40-50. PubMed ID: 30312655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational simulation associated with biological effects of alkyl organophosphate flame retardants with different carbon chain lengths on Chlorella pyrenoidosa.
    Chu Y; Zhang C; Ho SH
    Chemosphere; 2021 Jan; 263():127997. PubMed ID: 32846289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A systematic scoping review of epidemiological studies on the association between organophosphate flame retardants and neurotoxicity.
    Zhao JY; Zhan ZX; Lu MJ; Tao FB; Wu D; Gao H
    Ecotoxicol Environ Saf; 2022 Sep; 243():113973. PubMed ID: 35988382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive analysis-based study of triphenyl phosphate-environmental explanation of glioma progression.
    Zhang W; Song G
    Ecotoxicol Environ Saf; 2022 Dec; 248():114346. PubMed ID: 36455348
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organophosphate flame retardants, tetrabromobisphenol A, and their transformation products in sediment of e-waste dismantling areas and the flame-retardant production base.
    Chen P; Ma S; Yang Y; Qi Z; Wang Y; Li G; Tang J; Yu Y
    Ecotoxicol Environ Saf; 2021 Dec; 225():112717. PubMed ID: 34478981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Editor's Highlight: Comparative Toxicity of Organophosphate Flame Retardants and Polybrominated Diphenyl Ethers to Caenorhabditis elegans.
    Behl M; Rice JR; Smith MV; Co CA; Bridge MF; Hsieh JH; Freedman JH; Boyd WA
    Toxicol Sci; 2016 Dec; 154(2):241-252. PubMed ID: 27566445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioactivity assessment of organophosphate flame retardants via a dose-dependent yeast functional genomics approach.
    Guan M; Wang X; Xu X; Ling T; Wu J; Qian J; Ma F; Zhang X
    Environ Int; 2024 Apr; 186():108596. PubMed ID: 38522228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Urinary metabolites of organophosphate flame retardants and their variability in pregnant women.
    Hoffman K; Daniels JL; Stapleton HM
    Environ Int; 2014 Feb; 63():169-72. PubMed ID: 24316320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Size-dependent atmospheric deposition and inhalation exposure of particle-bound organophosphate flame retardants.
    Luo P; Bao LJ; Guo Y; Li SM; Zeng EY
    J Hazard Mater; 2016 Jan; 301():504-11. PubMed ID: 26414926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent biomonitoring reports on phosphate ester flame retardants: a short review.
    Saillenfait AM; Ndaw S; Robert A; Sabaté JP
    Arch Toxicol; 2018 Sep; 92(9):2749-2778. PubMed ID: 30097699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brominated and organophosphate flame retardants target different neurodevelopmental stages, characterized with embryonic neural stem cells and neuronotypic PC12 cells.
    Slotkin TA; Skavicus S; Stapleton HM; Seidler FJ
    Toxicology; 2017 Sep; 390():32-42. PubMed ID: 28851516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous biomonitoring of 15 organophosphate flame retardants metabolites in urine samples by solvent induced phase transition extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry.
    Hu L; Tao Y; Luo D; Feng J; Wang L; Yu M; Li Y; Covaci A; Mei S
    Chemosphere; 2019 Oct; 233():724-732. PubMed ID: 31200132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review on the occurrence of organophosphate flame retardants in the aquatic environment in China and implications for risk assessment.
    Chen MH; Ma WL
    Sci Total Environ; 2021 Aug; 783():147064. PubMed ID: 34088162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Indoor organophosphate and polybrominated flame retardants in Tokyo.
    Saito I; Onuki A; Seto H
    Indoor Air; 2007 Feb; 17(1):28-36. PubMed ID: 17257150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organophosphate flame retardants induce oxidative stress and Chop/Caspase 3-related apoptosis via Sod1/p53/Map3k6/Fkbp5 in NCI-1975 cells.
    Meng Y; Xu X; Niu D; Xu Y; Qiu Y; Zhu Z; Zhang H; Yin D
    Sci Total Environ; 2022 May; 819():153160. PubMed ID: 35051466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organophosphate ester flame retardants have antiandrogenic potential and affect other endocrine related endpoints in vitro and in silico.
    Rosenmai AK; Winge SB; Möller M; Lundqvist J; Wedebye EB; Nikolov NG; Lilith Johansson HK; Vinggaard AM
    Chemosphere; 2021 Jan; 263():127703. PubMed ID: 32854002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hepatic Gene Expression Profiling of Atlantic Cod (Gadus morhua) Liver after Exposure to Organophosphate Flame Retardants Revealed Altered Cholesterol Biosynthesis and Lipid Metabolism.
    Aluru N; G Hallanger I; McMonagle H; Harju M
    Environ Toxicol Chem; 2021 Jun; 40(6):1639-1648. PubMed ID: 33590914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.