These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35347167)

  • 1. Aquatic birds have middle ears adapted to amphibious lifestyles.
    Zeyl JN; Snelling EP; Connan M; Basille M; Clay TA; Joo R; Patrick SC; Phillips RA; Pistorius PA; Ryan PG; Snyman A; Clusella-Trullas S
    Sci Rep; 2022 Mar; 12(1):5251. PubMed ID: 35347167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphibious hearing in a diving bird, the great cormorant (
    Larsen ON; Wahlberg M; Christensen-Dalsgaard J
    J Exp Biol; 2020 Mar; 223(Pt 6):. PubMed ID: 32098879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specialization for underwater hearing by the tympanic middle ear of the turtle, Trachemys scripta elegans.
    Christensen-Dalsgaard J; Brandt C; Willis KL; Christensen CB; Ketten D; Edds-Walton P; Fay RR; Madsen PT; Carr CE
    Proc Biol Sci; 2012 Jul; 279(1739):2816-24. PubMed ID: 22438494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling of ear morphology across 127 bird species and its implications for hearing performance.
    Zeyl JN; Snelling EP; Joo R; Clusella-Trullas S
    Hear Res; 2023 Feb; 428():108679. PubMed ID: 36587457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Understanding of Phocidae Hearing Adaptations Through a Study of Northern Elephant Seal (Mirounga angustirostris) Ear Anatomy and Histology.
    Smodlaka H; Khamas WA; Jungers H; Pan R; Al-Tikriti M; Borovac JA; Palmer L; Bukac M
    Anat Rec (Hoboken); 2019 Sep; 302(9):1605-1614. PubMed ID: 30417986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Better than fish on land? Hearing across metamorphosis in salamanders.
    Christensen CB; Lauridsen H; Christensen-Dalsgaard J; Pedersen M; Madsen PT
    Proc Biol Sci; 2015 Mar; 282(1802):. PubMed ID: 25652830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hearing in birds: what changes from air to water.
    Dooling RJ; Therrien SC
    Adv Exp Med Biol; 2012; 730():77-82. PubMed ID: 22278454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Great cormorants (Phalacrocorax carbo) can detect auditory cues while diving.
    Hansen KA; Maxwell A; Siebert U; Larsen ON; Wahlberg M
    Naturwissenschaften; 2017 Jun; 104(5-6):45. PubMed ID: 28477271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods.
    Christensen CB; Christensen-Dalsgaard J; Madsen PT
    J Exp Biol; 2015 Feb; 218(Pt 3):381-7. PubMed ID: 25653420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eardrum and columella displacement in single ossicle ears under quasi-static pressure variations.
    Claes R; Muyshondt PGG; Van Assche F; Van Hoorebeke L; Aerts P; Dirckx JJJ
    Hear Res; 2018 Aug; 365():141-148. PubMed ID: 29804720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of the shape and size of the middle ear cavity of turtles reveals no correlation with habitat ecology.
    Foth C; Evers SW; Joyce WG; Volpato VS; Benson RBJ
    J Anat; 2019 Dec; 235(6):1078-1097. PubMed ID: 31373396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrasonic hearing in birds: a review of audiometry and hypothesized structure-function relationships.
    Zeyl JN; den Ouden O; Köppl C; Assink J; Christensen-Dalsgaard J; Patrick SC; Clusella-Trullas S
    Biol Rev Camb Philos Soc; 2020 Aug; 95(4):1036-1054. PubMed ID: 32237036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Underwater hearing and sound localization with and without an air interface.
    Shupak A; Sharoni Z; Yanir Y; Keynan Y; Alfie Y; Halpern P
    Otol Neurotol; 2005 Jan; 26(1):127-30. PubMed ID: 15699733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound transmission in archaic and modern whales: anatomical adaptations for underwater hearing.
    Nummela S; Thewissen JG; Bajpai S; Hussain T; Kumar K
    Anat Rec (Hoboken); 2007 Jun; 290(6):716-33. PubMed ID: 17516434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Middle ear cavity morphology is consistent with an aquatic origin for testudines.
    Willis KL; Christensen-Dalsgaard J; Ketten DR; Carr CE
    PLoS One; 2013; 8(1):e54086. PubMed ID: 23342082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How flexibility and eardrum cone shape affect sound conduction in single-ossicle ears: a dynamic model study of the chicken middle ear.
    Muyshondt PGG; Dirckx JJJ
    Biomech Model Mechanobiol; 2020 Feb; 19(1):233-249. PubMed ID: 31372910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seismic sensitivity and bone conduction mechanisms enable extratympanic hearing in salamanders.
    Capshaw G; Soares D; Christensen-Dalsgaard J; Carr CE
    J Exp Biol; 2020 Dec; 223(Pt 24):. PubMed ID: 33161383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative and developmental patterns of amphibious auditory function in salamanders.
    Zeyl JN; Johnston CE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Dec; 202(12):879-894. PubMed ID: 27766381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The anatomical basis of amphibious hearing in the American alligator (Alligator mississippiensis).
    Young BA; Cramberg M
    Anat Rec (Hoboken); 2024 Jan; 307(1):198-207. PubMed ID: 37259899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones.
    Voss SE; Rosowski JJ; Shera CA; Peake WT
    J Acoust Soc Am; 2000 Mar; 107(3):1548-65. PubMed ID: 10738809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.