These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35347784)
1. Beyond well-mixed: A simple probabilistic model of airborne disease transmission in indoor spaces. Tan S; Zhang Z; Maki K; Fidkowski KJ; Capecelatro J Indoor Air; 2022 Mar; 32(3):e13015. PubMed ID: 35347784 [TBL] [Abstract][Full Text] [Related]
2. Transport characteristics of expiratory droplets and droplet nuclei in indoor environments with different ventilation airflow patterns. Wan MP; Chao CY J Biomech Eng; 2007 Jun; 129(3):341-53. PubMed ID: 17536901 [TBL] [Abstract][Full Text] [Related]
3. Infection risk in cable cars and other enclosed spaces. Lunati I; Mucignat C Indoor Air; 2022 Aug; 32(8):e13094. PubMed ID: 36040286 [TBL] [Abstract][Full Text] [Related]
4. Contaminant removal and contaminant dispersion of air distribution for overall and local airborne infection risk controls. Zhang S; Niu D; Lu Y; Lin Z Sci Total Environ; 2022 Aug; 833():155173. PubMed ID: 35421454 [TBL] [Abstract][Full Text] [Related]
5. A probabilistic transmission dynamic model to assess indoor airborne infection risks. Liao CM; Chang CF; Liang HM Risk Anal; 2005 Oct; 25(5):1097-107. PubMed ID: 16297217 [TBL] [Abstract][Full Text] [Related]
6. Numerical modeling of exhaled droplet nuclei dispersion and mixing in indoor environments. Mui KW; Wong LT; Wu CL; Lai AC J Hazard Mater; 2009 Aug; 167(1-3):736-44. PubMed ID: 19232824 [TBL] [Abstract][Full Text] [Related]
7. A methodology for estimating airborne virus exposures in indoor environments using the spatial distribution of expiratory aerosols and virus viability characteristics. Sze To GN; Wan MP; Chao CY; Wei F; Yu SC; Kwan JK Indoor Air; 2008 Oct; 18(5):425-38. PubMed ID: 18691266 [TBL] [Abstract][Full Text] [Related]
8. Performance of deterministic workplace exposure assessment models for various contaminant source, air inlet, and exhaust locations. Feigley CE; Bennett JS; Khan J; Lee E AIHA J (Fairfax, Va); 2002; 63(4):402-12. PubMed ID: 12486773 [TBL] [Abstract][Full Text] [Related]
9. A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces. Li X; Lester D; Rosengarten G; Aboltins C; Patel M; Cole I Sci Total Environ; 2022 Mar; 812():152592. PubMed ID: 34954184 [TBL] [Abstract][Full Text] [Related]
10. Ventilation Rates and Airflow Pathways in Patient Rooms: A Case Study of Bioaerosol Containment and Removal. Mousavi ES; Grosskopf KR Ann Occup Hyg; 2015 Nov; 59(9):1190-9. PubMed ID: 26187326 [TBL] [Abstract][Full Text] [Related]
11. [Modelling the Contribution of Factors Influencing the Risk of SARS-CoV-2 Infection in Indoor Environments]. Almeida SM; Sousa J Acta Med Port; 2021 Dec; 34(12):815-825. PubMed ID: 34748475 [TBL] [Abstract][Full Text] [Related]
12. Intermittent occupancy combined with ventilation: An efficient strategy for the reduction of airborne transmission indoors. Melikov AK; Ai ZT; Markov DG Sci Total Environ; 2020 Nov; 744():140908. PubMed ID: 32721678 [TBL] [Abstract][Full Text] [Related]
13. Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks. Peng Z; Rojas ALP; Kropff E; Bahnfleth W; Buonanno G; Dancer SJ; Kurnitski J; Li Y; Loomans MGLC; Marr LC; Morawska L; Nazaroff W; Noakes C; Querol X; Sekhar C; Tellier R; Greenhalgh T; Bourouiba L; Boerstra A; Tang JW; Miller SL; Jimenez JL Environ Sci Technol; 2022 Jan; 56(2):1125-1137. PubMed ID: 34985868 [TBL] [Abstract][Full Text] [Related]
14. Dispersion of exhaled droplet nuclei in a two-bed hospital ward with three different ventilation systems. Qian H; Li Y; Nielsen PV; Hyldgaard CE; Wong TW; Chwang AT Indoor Air; 2006 Apr; 16(2):111-28. PubMed ID: 16507039 [TBL] [Abstract][Full Text] [Related]
15. Building Ventilation as an Effective Disease Intervention Strategy in a Dense Indoor Contact Network in an Ideal City. Gao X; Wei J; Lei H; Xu P; Cowling BJ; Li Y PLoS One; 2016; 11(9):e0162481. PubMed ID: 27611368 [TBL] [Abstract][Full Text] [Related]
16. Modelling the transmission of airborne infections in enclosed spaces. Noakes CJ; Beggs CB; Sleigh PA; Kerr KG Epidemiol Infect; 2006 Oct; 134(5):1082-91. PubMed ID: 16476170 [TBL] [Abstract][Full Text] [Related]
17. Identifying the contribution of charge effects to airborne transmission of aerosols in confined spaces. Wang W; Kimoto S; Huang R; Matsui Y; Yoneda M; Wang H; Wang B Sci Total Environ; 2022 Apr; 816():151527. PubMed ID: 34762944 [TBL] [Abstract][Full Text] [Related]
18. Optimizing indoor air quality: CFD simulation and novel air cleaning methods for effective aerosol particle inhibition in public spaces. Geng CL; Zhu XY; Chen N Environ Sci Pollut Res Int; 2023 Dec; 30(57):120528-120539. PubMed ID: 37943437 [TBL] [Abstract][Full Text] [Related]
19. Markov modeling of contaminant concentrations in indoor air. Nicas M AIHAJ; 2000; 61(4):484-91. PubMed ID: 10976677 [TBL] [Abstract][Full Text] [Related]
20. Assessing Effectiveness of Ceiling-Ventilated Mock Airborne Infection Isolation Room in Preventing Hospital-Acquired Influenza Transmission to Health Care Workers. Thatiparti DS; Ghia U; Mead KR ASHRAE Trans; 2016; 122(2):35-46. PubMed ID: 28529344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]