These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35347794)

  • 1. Modification of cleaning product formulations could improve indoor air quality.
    Carslaw N; Shaw D
    Indoor Air; 2022 Mar; 32(3):e13021. PubMed ID: 35347794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.
    Singer BC; Destaillats H; Hodgson AT; Nazaroff WW
    Indoor Air; 2006 Jun; 16(3):179-91. PubMed ID: 16683937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios.
    Youssefi S; Waring MS
    Environ Sci Technol; 2014 Jul; 48(14):7899-908. PubMed ID: 24940869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent.
    Nørgaard AW; Kofoed-Sørensen V; Mandin C; Ventura G; Mabilia R; Perreca E; Cattaneo A; Spinazzè A; Mihucz VG; Szigeti T; de Kluizenaar Y; Cornelissen HJ; Trantallidi M; Carrer P; Sakellaris I; Bartzis J; Wolkoff P
    Environ Sci Technol; 2014 Nov; 48(22):13331-9. PubMed ID: 25299176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary product creation potential (SPCP): a metric for assessing the potential impact of indoor air pollution on human health.
    Carslaw N; Shaw D
    Environ Sci Process Impacts; 2019 Aug; 21(8):1313-1322. PubMed ID: 31140998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions.
    Fan Z; Lioy P; Weschler C; Fiedler N; Kipen H; Zhang J
    Environ Sci Technol; 2003 May; 37(9):1811-21. PubMed ID: 12775052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of indoor limonene by outdoor ozone: A cascade of secondary organic aerosols.
    Rösch C; Wissenbach DK; Franck U; Wendisch M; Schlink U
    Environ Pollut; 2017 Jul; 226():463-472. PubMed ID: 28456415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects by inhalation of abundant fragrances in indoor air - An overview.
    Wolkoff P; Nielsen GD
    Environ Int; 2017 Apr; 101():96-107. PubMed ID: 28126407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ozone and limonene in indoor air: a source of submicron particle exposure.
    Wainman T; Zhang J; Weschler CJ; Lioy PJ
    Environ Health Perspect; 2000 Dec; 108(12):1139-45. PubMed ID: 11133393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical reactions among indoor pollutants: what we've learned in the new millennium.
    Weschler CJ
    Indoor Air; 2004; 14 Suppl 7():184-94. PubMed ID: 15330786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modeling study of the impact of photolysis on indoor air quality.
    Wang Z; Shaw D; Kahan T; Schoemaecker C; Carslaw N
    Indoor Air; 2022 Jun; 32(6):e13054. PubMed ID: 35762241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of indoor air quality in office buildings across Europe - The OFFICAIR study.
    Mandin C; Trantallidi M; Cattaneo A; Canha N; Mihucz VG; Szigeti T; Mabilia R; Perreca E; Spinazzè A; Fossati S; De Kluizenaar Y; Cornelissen E; Sakellaris I; Saraga D; Hänninen O; De Oliveira Fernandes E; Ventura G; Wolkoff P; Carrer P; Bartzis J
    Sci Total Environ; 2017 Feb; 579():169-178. PubMed ID: 27866741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales.
    Shiraiwa M; Carslaw N; Tobias DJ; Waring MS; Rim D; Morrison G; Lakey PSJ; Kruza M; von Domaros M; Cummings BE; Won Y
    Environ Sci Process Impacts; 2019 Aug; 21(8):1240-1254. PubMed ID: 31070639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indoor hydrogen peroxide derived from ozone/d-limonene reactions.
    Li TH; Turpin BJ; Shields HC; Weschler CJ
    Environ Sci Technol; 2002 Aug; 36(15):3295-302. PubMed ID: 12188357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radical yields from reactions of terpene mixtures with ozone.
    Forester CD; Wells JR
    Indoor Air; 2011 Oct; 21(5):400-9. PubMed ID: 21470312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indoor Illumination of Terpenes and Bleach Emissions Leads to Particle Formation and Growth.
    Wang C; Collins DB; Abbatt JPD
    Environ Sci Technol; 2019 Oct; 53(20):11792-11800. PubMed ID: 31576741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do breath and skin emissions impact indoor air chemistry?
    Kruza M; Carslaw N
    Indoor Air; 2019 May; 29(3):369-379. PubMed ID: 30663813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary organic aerosol in residences: predicting its fraction of fine particle mass and determinants of formation strength.
    Waring MS
    Indoor Air; 2014 Aug; 24(4):376-89. PubMed ID: 24387324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characteristics of indoor gaseous air pollutants in winter].
    Yamada T; Ohta M; Ucmiyami S; Inaba Y; Goto S; Kunugita N
    J UOEH; 2010 Sep; 32(3):245-55. PubMed ID: 20857818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the European Union: comparison of measured and modelled exposure data.
    Bruinen de Bruin Y; Koistinen K; Kephalopoulos S; Geiss O; Tirendi S; Kotzias D
    Environ Sci Pollut Res Int; 2008 Jul; 15(5):417-30. PubMed ID: 18491156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.