These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 35347829)
1. Surface-Adaptive Capillarity Enabling Densified 3D Printing for Ultra-High Areal and Volumetric Energy Density Supercapacitors. Li X; Ling S; Cao W; Zeng L; Yuan R; Zhang C Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202202663. PubMed ID: 35347829 [TBL] [Abstract][Full Text] [Related]
2. 3D Printed Nitrogen-Doped Thick Carbon Architectures for Supercapacitor: Ink Rheology and Electrochemical Performance. Zhou G; Li MC; Liu C; Liu C; Li Z; Mei C Adv Sci (Weinh); 2023 Apr; 10(10):e2206320. PubMed ID: 36748294 [TBL] [Abstract][Full Text] [Related]
3. 3D Printing of NiCoP/Ti Yu L; Li W; Wei C; Yang Q; Shao Y; Sun J Nanomicro Lett; 2020 Jul; 12(1):143. PubMed ID: 34138137 [TBL] [Abstract][Full Text] [Related]
4. A 3D-Printed Proton Pseudocapacitor with Ultrahigh Mass Loading and Areal Energy Density for Fast Energy Storage at Low Temperature. Zhang M; Xu T; Wang D; Yao T; Xu Z; Liu Q; Shen L; Yu Y Adv Mater; 2023 Jun; 35(23):e2209963. PubMed ID: 36626913 [TBL] [Abstract][Full Text] [Related]
5. 3D Printing of Additive-Free 2D Ti Orangi J; Hamade F; Davis VA; Beidaghi M ACS Nano; 2020 Jan; 14(1):640-650. PubMed ID: 31891247 [TBL] [Abstract][Full Text] [Related]
6. Electrochemically Exfoliated Graphene Additive-Free Inks for 3D Printing Customizable Monolithic Integrated Micro-Supercapacitors on a Large Scale. Zhang L; Qin J; Das P; Wang S; Bai T; Zhou F; Wu M; Wu ZS Adv Mater; 2024 May; 36(19):e2313930. PubMed ID: 38325888 [TBL] [Abstract][Full Text] [Related]
7. Packing Activated Carbons into Dense Graphene Network by Capillarity for High Volumetric Performance Supercapacitors. Li P; Li H; Han D; Shang T; Deng Y; Tao Y; Lv W; Yang QH Adv Sci (Weinh); 2019 Jul; 6(14):1802355. PubMed ID: 31380202 [TBL] [Abstract][Full Text] [Related]
8. Mechanically Induced Nanoscale Architecture Endows a Titanium Carbide MXene Electrode with Integrated High Areal and Volumetric Capacitance. Chen H; Wang H; Li C Adv Mater; 2022 Oct; 34(43):e2205723. PubMed ID: 36050282 [TBL] [Abstract][Full Text] [Related]
9. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors. Sundriyal P; Bhattacharya S ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438 [TBL] [Abstract][Full Text] [Related]
10. Direct Ink Writing 3D Printing for High-Performance Electrochemical Energy Storage Devices: A Minireview. Zeng L; Ling S; Du D; He H; Li X; Zhang C Adv Sci (Weinh); 2023 Nov; 10(32):e2303716. PubMed ID: 37740446 [TBL] [Abstract][Full Text] [Related]
11. Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates. Chen B; Jiang Y; Tang X; Pan Y; Hu S ACS Appl Mater Interfaces; 2017 Aug; 9(34):28433-28440. PubMed ID: 28782923 [TBL] [Abstract][Full Text] [Related]
12. Printed Electrodes Based on Vanadium Dioxide and Gold Nanoparticles for Asymmetric Supercapacitors. Minyawi BA; Vaseem M; Alhebshi NA; Al-Amri AM; Shamim A Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764596 [TBL] [Abstract][Full Text] [Related]
13. Drying-Mediated Self-Assembly of Graphene for Inkjet Printing of High-Rate Micro-supercapacitors. Sollami Delekta S; Laurila MM; Mäntysalo M; Li J Nanomicro Lett; 2020 Jan; 12(1):40. PubMed ID: 34138275 [TBL] [Abstract][Full Text] [Related]
14. Sand-Milling Fabrication of Screen-Printable Graphene Composite Inks for High-Performance Planar Micro-Supercapacitors. Chen H; Chen S; Zhang Y; Ren H; Hu X; Bai Y ACS Appl Mater Interfaces; 2020 Dec; 12(50):56319-56329. PubMed ID: 33280375 [TBL] [Abstract][Full Text] [Related]
15. 3D printing of fast kinetics reconciled ultra-thick cathodes for high areal energy density aqueous Li-Zn hybrid battery. He H; Luo D; Zeng L; He J; Li X; Yu H; Zhang C Sci Bull (Beijing); 2022 Jun; 67(12):1253-1263. PubMed ID: 36546155 [TBL] [Abstract][Full Text] [Related]
16. Opening MXene Ion Transport Channels by Intercalating PANI Nanoparticles from the Self-Assembly Approach for High Volumetric and Areal Energy Density Supercapacitors. Wang X; Wang Y; Liu D; Li X; Xiao H; Ma Y; Xu M; Yuan G; Chen G ACS Appl Mater Interfaces; 2021 Jul; 13(26):30633-30642. PubMed ID: 34156249 [TBL] [Abstract][Full Text] [Related]
17. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores. Zhu C; Liu T; Qian F; Han TY; Duoss EB; Kuntz JD; Spadaccini CM; Worsley MA; Li Y Nano Lett; 2016 Jun; 16(6):3448-56. PubMed ID: 26789202 [TBL] [Abstract][Full Text] [Related]
18. 3D Printing MXene-Based Electrodes for Supercapacitors. Jiang X; Bai J; Wijerathne B; Zhou Q; Zhang F; Liao T; Sun Z Chem Asian J; 2024 Dec; 19(23):e202400568. PubMed ID: 39155268 [TBL] [Abstract][Full Text] [Related]
19. Direct Inkjet Printing of Aqueous Inks to Flexible All-Solid-State Graphene Hybrid Micro-Supercapacitors. Li B; Hu N; Su Y; Yang Z; Shao F; Li G; Zhang C; Zhang Y ACS Appl Mater Interfaces; 2019 Dec; 11(49):46044-46053. PubMed ID: 31718126 [TBL] [Abstract][Full Text] [Related]
20. Aqueous Inks of Pristine Graphene for 3D Printed Microsupercapacitors with High Capacitance. Tagliaferri S; Nagaraju G; Panagiotopoulos A; Och M; Cheng G; Iacoviello F; Mattevi C ACS Nano; 2021 Sep; 15(9):15342-15353. PubMed ID: 34491713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]