These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 35348176)
1. Cu-Chelated polydopamine nanoparticles as a photothermal medium and "immunogenic cell death" inducer for combined tumor therapy. Xu N; Hu A; Pu X; Wang J; Liao X; Huang Z; Yin G J Mater Chem B; 2022 Apr; 10(16):3104-3118. PubMed ID: 35348176 [TBL] [Abstract][Full Text] [Related]
3. Supramolecular assembly of Polydopamine@Fe nanoparticles with near-infrared light-accelerated cascade catalysis applied for synergistic photothermal-enhanced chemodynamic therapy. Jia Y; Gao F; Wang P; Bai S; Li H; Li J J Colloid Interface Sci; 2024 Dec; 676():626-635. PubMed ID: 39053410 [TBL] [Abstract][Full Text] [Related]
4. Polydopamine-based nanoplatform for photothermal ablation with long-term immune activation against melanoma and its recurrence. Li M; Guo R; Wei J; Deng M; Li J; Tao Y; Li M; He Q Acta Biomater; 2021 Dec; 136():546-557. PubMed ID: 34536603 [TBL] [Abstract][Full Text] [Related]
5. Mutual Benefit between Cu(II) and Polydopamine for Improving Photothermal-Chemodynamic Therapy. Zhang WX; Hao YN; Gao YR; Shu Y; Wang JH ACS Appl Mater Interfaces; 2021 Aug; 13(32):38127-38137. PubMed ID: 34347422 [TBL] [Abstract][Full Text] [Related]
6. Tumor-specific activatable biopolymer nanoparticles stabilized by hydroxyethyl starch prodrug for self-amplified cooperative cancer therapy. Xiong Y; Wang Z; Wang Q; Deng Q; Chen J; Wei J; Yang X; Yang X; Li Z Theranostics; 2022; 12(2):944-962. PubMed ID: 34976222 [No Abstract] [Full Text] [Related]
7. Fe(III)-Chelated Polydopamine Nanoparticles for Synergistic Tumor Therapies of Enhanced Photothermal Ablation and Antitumor Immune Activation. Xu N; Hu A; Pu X; Li J; Wang X; Wang J; Huang Z; Liao X; Yin G ACS Appl Mater Interfaces; 2022 Apr; 14(14):15894-15910. PubMed ID: 35357136 [TBL] [Abstract][Full Text] [Related]
8. Tumor microenvironment-responsive polydopamine-based core/shell nanoplatform for synergetic theranostics. Chen Q; Shan X; Shi S; Jiang C; Li T; Wei S; Zhang X; Sun G; Liu J J Mater Chem B; 2020 May; 8(18):4056-4066. PubMed ID: 32270145 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional CuFe Chen N; Li Y; Li H; Wang Y; Zeng Y; Zhang M; Pan Z; Chen Z; Liang W; Huang J; Zhang K; Liu X; He Y Colloids Surf B Biointerfaces; 2023 Sep; 229():113445. PubMed ID: 37441838 [TBL] [Abstract][Full Text] [Related]
10. Photothermal nanozymes to self-augment combination cancer therapy by dual-glutathione depletion and hyperthermia/acidity-activated hydroxyl radical generation. Wang TH; Shen MY; Yeh NT; Chen YH; Hsu TC; Chin HY; Wu YT; Tzang BS; Chiang WH J Colloid Interface Sci; 2023 Nov; 650(Pt B):1698-1714. PubMed ID: 37499626 [TBL] [Abstract][Full Text] [Related]
11. Ultrasmall Gold-Coated Mesoporous Polydopamine Nanoprobe to Enhance Chemodynamic Therapy by Self-Supplying H Wang Z; Shi Y; Shi Y; Zhang J; Hao R; Zhang G; Zeng L ACS Appl Mater Interfaces; 2022 Dec; 14(49):54478-54487. PubMed ID: 36448730 [TBL] [Abstract][Full Text] [Related]
12. Manganese-containing polydopamine nanoparticles as theranostic agents for magnetic resonance imaging and photothermal/chemodynamic combined ferroptosis therapy treating gastric cancer. Chen Z; Li Z; Li C; Huang H; Ren Y; Li Z; Hu Y; Guo W Drug Deliv; 2022 Dec; 29(1):1201-1211. PubMed ID: 35403518 [TBL] [Abstract][Full Text] [Related]
13. H Xiao Z; Zuo W; Chen L; Wu L; Liu N; Liu J; Jin Q; Zhao Y; Zhu X ACS Appl Mater Interfaces; 2021 Sep; 13(37):43925-43936. PubMed ID: 34499485 [TBL] [Abstract][Full Text] [Related]
14. Tumor targeting and penetrating biomimetic mesoporous polydopamine nanoparticles facilitate photothermal killing and autophagy blocking for synergistic tumor ablation. Huang X; Chen L; Lin Y; Tou KI; Cai H; Jin H; Lin W; Zhang J; Cai J; Zhou H; Pi J Acta Biomater; 2021 Dec; 136():456-472. PubMed ID: 34562660 [TBL] [Abstract][Full Text] [Related]
15. NIR-II-driven and glutathione depletion-enhanced hypoxia-irrelevant free radical nanogenerator for combined cancer therapy. Zhang L; Fan Y; Yang Z; Yang M; Wong CY J Nanobiotechnology; 2021 Sep; 19(1):265. PubMed ID: 34488803 [TBL] [Abstract][Full Text] [Related]
16. Mitochondria-Targeting MoS Li X; Xiao H; Xiu W; Yang K; Zhang Y; Yuwen L; Yang D; Weng L; Wang L ACS Appl Mater Interfaces; 2021 Dec; 13(47):55928-55938. PubMed ID: 34786942 [TBL] [Abstract][Full Text] [Related]
17. An Organic Nanotherapeutic Agent Self-Assembled from Cyanine and Cu (II) for Combined Photothermal and Chemodynamic Therapy. Li X; Xi D; Yang M; Sun W; Peng X; Fan J Adv Healthc Mater; 2021 Oct; 10(20):e2101008. PubMed ID: 34515401 [TBL] [Abstract][Full Text] [Related]
18. A copper-metal organic framework enhances the photothermal and chemodynamic properties of polydopamine for melanoma therapy. Liu L; Zhang H; Peng L; Wang D; Zhang Y; Yan B; Xie J; Xing S; Peng F; Liu X Acta Biomater; 2023 Mar; 158():660-672. PubMed ID: 36640955 [TBL] [Abstract][Full Text] [Related]
19. Copper-based theranostic nanocatalysts for synergetic photothermal-chemodynamic therapy. Zuo W; Fan Z; Chen L; Liu J; Wan Z; Xiao Z; Chen W; Wu L; Chen D; Zhu X Acta Biomater; 2022 Jul; 147():258-269. PubMed ID: 35605954 [TBL] [Abstract][Full Text] [Related]
20. CeO Zhang J; Hu M; Wen C; Liu J; Yu F; Long J; Lin XC Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37683677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]