BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35348322)

  • 1. Cryptic Phosphorylation-Mediated Divergent Biosynthesis of High-Carbon Sugar Nucleoside Antifungals.
    Draelos MM; Thanapipatsiri A; Du Y; Yokoyama K
    ACS Chem Biol; 2022 Apr; 17(4):898-907. PubMed ID: 35348322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptic phosphorylation in nucleoside natural product biosynthesis.
    Draelos MM; Thanapipatsiri A; Sucipto H; Yokoyama K
    Nat Chem Biol; 2021 Feb; 17(2):213-221. PubMed ID: 33257873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved Mechanism of 2'-Phosphorylation-Aided Amide Ligation in Peptidyl Nucleoside Biosynthesis.
    Draelos MM; Thanapipatsiri A; Yokoyama K
    Biochemistry; 2021 Jul; 60(28):2231-2235. PubMed ID: 34242001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-Nucleoside Formation in the Biosynthesis of the Antifungal Malayamycin A.
    Hong H; Samborskyy M; Zhou Y; Leadlay PF
    Cell Chem Biol; 2019 Apr; 26(4):493-501.e5. PubMed ID: 30713097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis and Genome Mining Potentials of Nucleoside Natural Products.
    Du Y; Thanapipatsiri A; Yokoyama K
    Chembiochem; 2023 Sep; 24(17):e202300342. PubMed ID: 37357819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon extension in peptidylnucleoside biosynthesis by radical SAM enzymes.
    Lilla EA; Yokoyama K
    Nat Chem Biol; 2016 Nov; 12(11):905-907. PubMed ID: 27642865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of the structurally unique polycyclopropanated polyketide-nucleoside hybrid jawsamycin (FR-900848).
    Hiratsuka T; Suzuki H; Kariya R; Seo T; Minami A; Oikawa H
    Angew Chem Int Ed Engl; 2014 May; 53(21):5423-6. PubMed ID: 24756819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Miharamycin Biosynthesis Reveals a Hybrid NRPS-PKS to Synthesize High-Carbon Sugar from a Complex Nucleoside.
    Wang F; Zhang WH; Zhao J; Kang WJ; Wang S; Yu B; Pan HX; Tang GL
    J Am Chem Soc; 2020 Apr; 142(13):5996-6000. PubMed ID: 32167762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis and combinatorial biosynthesis of antifungal nucleoside antibiotics.
    Niu G; Zheng J; Tan H
    Sci China Life Sci; 2017 Sep; 60(9):939-947. PubMed ID: 28785949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature's combinatorial biosynthesis and recently engineered production of nucleoside antibiotics in Streptomyces.
    Chen S; Kinney WA; Van Lanen S
    World J Microbiol Biotechnol; 2017 Apr; 33(4):66. PubMed ID: 28260195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid antibiotics with the nikkomycin nucleoside and polyoxin peptidyl moieties.
    Li J; Li L; Tian Y; Niu G; Tan H
    Metab Eng; 2011 May; 13(3):336-44. PubMed ID: 21292022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in the biosynthesis of nucleoside antibiotics.
    Shiraishi T; Kuzuyama T
    J Antibiot (Tokyo); 2019 Dec; 72(12):913-923. PubMed ID: 31554958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the Amipurimycin Gene Cluster Yields Insight into the Biosynthesis of C9 Sugar Nucleoside Antibiotics.
    Kang WJ; Pan HX; Wang S; Yu B; Hua H; Tang GL
    Org Lett; 2019 May; 21(9):3148-3152. PubMed ID: 30990701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Biosynthesis of Capuramycin-type Antibiotics: IDENTIFICATION OF THE A-102395 BIOSYNTHETIC GENE CLUSTER, MECHANISM OF SELF-RESISTANCE, AND FORMATION OF URIDINE-5'-CARBOXAMIDE.
    Cai W; Goswami A; Yang Z; Liu X; Green KD; Barnard-Britson S; Baba S; Funabashi M; Nonaka K; Sunkara M; Morris AJ; Spork AP; Ducho C; Garneau-Tsodikova S; Thorson JS; Van Lanen SG
    J Biol Chem; 2015 May; 290(22):13710-24. PubMed ID: 25855790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering nucleoside antibiotics toward the development of novel antimicrobial agents.
    Niu G; Li Z; Huang P; Tan H
    J Antibiot (Tokyo); 2019 Dec; 72(12):906-912. PubMed ID: 31501499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of an octosyl acid backbone catalyzed by a radical
    He N; Wu P; Lei Y; Xu B; Zhu X; Xu G; Gao Y; Qi J; Deng Z; Tang G; Chen W; Xiao Y
    Chem Sci; 2017 Jan; 8(1):444-451. PubMed ID: 28451191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of the polyoxins, nucleoside peptide antibiotics: glutamate as an origin of 2-amino-2-deoxy-L-xylonic acid (polyoxamic acid).
    Funayama S; Isono K
    Biochemistry; 1975 Dec; 14(26):5568-. PubMed ID: 1203243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.
    Niu G; Tan H
    Trends Microbiol; 2015 Feb; 23(2):110-9. PubMed ID: 25468791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyridoxal-5'-phosphate-dependent alkyl transfer in nucleoside antibiotic biosynthesis.
    Cui Z; Overbay J; Wang X; Liu X; Zhang Y; Bhardwaj M; Lemke A; Wiegmann D; Niro G; Thorson JS; Ducho C; Van Lanen SG
    Nat Chem Biol; 2020 Aug; 16(8):904-911. PubMed ID: 32483377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes.
    Chen W; Qi J; Wu P; Wan D; Liu J; Feng X; Deng Z
    J Ind Microbiol Biotechnol; 2016 Mar; 43(2-3):401-17. PubMed ID: 26153500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.