These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 35348343)

  • 1. How Superhydrophobic Grooves Drive Single-Droplet Jumping.
    Chu F; Yan X; Miljkovic N
    Langmuir; 2022 Apr; 38(14):4452-4460. PubMed ID: 35348343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces.
    Yan X; Qin Y; Chen F; Zhao G; Sett S; Hoque MJ; Rabbi KF; Zhang X; Wang Z; Li L; Chen F; Feng J; Miljkovic N
    ACS Nano; 2020 Oct; 14(10):12796-12809. PubMed ID: 33052666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves.
    Peng Q; Yan X; Li J; Li L; Cha H; Ding Y; Dang C; Jia L; Miljkovic N
    Langmuir; 2020 Aug; 36(32):9510-9522. PubMed ID: 32689802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Jumping-Droplet Departure.
    Kim MK; Cha H; Birbarah P; Chavan S; Zhong C; Xu Y; Miljkovic N
    Langmuir; 2015 Dec; 31(49):13452-66. PubMed ID: 26571384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes.
    Cha H; Chun JM; Sotelo J; Miljkovic N
    ACS Nano; 2016 Sep; 10(9):8223-32. PubMed ID: 27447844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical and Optimal Wall Conditions for Coalescence-Induced Droplet Jumping on Textured Superhydrophobic Surfaces.
    Yin C; Wang T; Che Z; Jia M; Sun K
    Langmuir; 2019 Dec; 35(49):16201-16209. PubMed ID: 31738548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Efficiency Directional Ejection of Coalesced Drops on a Circular Groove.
    Liu Y; Li X; Lu C; Yuan Z; Liu C; Zhang J; Zhao L
    Langmuir; 2022 Apr; 38(13):4028-4035. PubMed ID: 35319209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior.
    Chen X; Wang P; Zhang D
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38276-38284. PubMed ID: 31529958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single Condensation Droplet Self-Ejection from Divergent Structures with Uniform Wettability.
    Di Novo NG; Bagolini A; Pugno NM
    ACS Nano; 2024 Mar; 18(12):8626-8640. PubMed ID: 38417167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Condensation.
    Yan X; Chen F; Sett S; Chavan S; Li H; Feng L; Li L; Zhao F; Zhao C; Huang Z; Miljkovic N
    ACS Nano; 2019 Jul; 13(7):8169-8184. PubMed ID: 31265236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet Jumping: Effects of Droplet Size, Surface Structure, Pinning, and Liquid Properties.
    Yan X; Zhang L; Sett S; Feng L; Zhao C; Huang Z; Vahabi H; Kota AK; Chen F; Miljkovic N
    ACS Nano; 2019 Feb; 13(2):1309-1323. PubMed ID: 30624899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laplace Pressure Difference Enhances Droplet Coalescence Jumping on Superhydrophobic Structures.
    Liu C; Zhao M; Lu D; Sun Y; Song L; Zheng Y
    Langmuir; 2022 Jun; 38(22):6923-6933. PubMed ID: 35451848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces.
    Gao Y; Ke Z; Yang W; Wang Z; Zhang Y; Wu W
    Langmuir; 2022 Aug; 38(32):9981-9991. PubMed ID: 35917142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove.
    Lu D; Zhao M; Zhang H; Yang Y; Zheng Y
    Langmuir; 2020 May; 36(19):5444-5453. PubMed ID: 32311257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particulate-Droplet Coalescence and Self-Transport on Superhydrophobic Surfaces.
    Yan X; Ji B; Feng L; Wang X; Yang D; Rabbi KF; Peng Q; Hoque MJ; Jin P; Bello E; Sett S; Alleyne M; Cropek DM; Miljkovic N
    ACS Nano; 2022 Aug; 16(8):12910-12921. PubMed ID: 35960260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement and Guidance of Coalescence-Induced Jumping of Droplets on Superhydrophobic Surfaces with a U-Groove.
    Liu C; Zhao M; Zheng Y; Lu D; Song L
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32542-32554. PubMed ID: 34180653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultimate jumping of coalesced droplets on superhydrophobic surfaces.
    Yuan Z; Gao S; Hu Z; Dai L; Hou H; Chu F; Wu X
    J Colloid Interface Sci; 2021 Apr; 587():429-436. PubMed ID: 33383432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.