BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35348595)

  • 1. DeepTTA: a transformer-based model for predicting cancer drug response.
    Jiang L; Jiang C; Yu X; Fu R; Jin S; Liu X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35348595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hi-GeoMVP: a hierarchical geometry-enhanced deep learning model for drug response prediction.
    Chen Y; Zhang L
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38614131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepAEG: a model for predicting cancer drug response based on data enhancement and edge-collaborative update strategies.
    Lao C; Zheng P; Chen H; Liu Q; An F; Li Z
    BMC Bioinformatics; 2024 Mar; 25(1):105. PubMed ID: 38461284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iBT-Net: an incremental broad transformer network for cancer drug response prediction.
    Zhan Y; Guo J; Philip Chen CL; Meng XB
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37429577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DROEG: a method for cancer drug response prediction based on omics and essential genes integration.
    Wu P; Sun R; Fahira A; Chen Y; Jiangzhou H; Wang K; Yang Q; Dai Y; Pan D; Shi Y; Wang Z
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning the cellular activity representation based on gene regulatory networks for prediction of tumor response to drugs.
    Xie X; Wang F; Wang G; Zhu W; Du X; Wang H
    Artif Intell Med; 2024 Jun; 152():102864. PubMed ID: 38640702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting drug response of tumors from integrated genomic profiles by deep neural networks.
    Chiu YC; Chen HH; Zhang T; Zhang S; Gorthi A; Wang LJ; Huang Y; Chen Y
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):18. PubMed ID: 30704458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks.
    Liu H; Peng W; Dai W; Lin J; Fu X; Liu L; Liu L; Yu N
    Methods; 2024 Feb; 222():41-50. PubMed ID: 38157919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular data representation based on gene embeddings for cancer drug response prediction.
    Park S; Lee H
    Sci Rep; 2023 Dec; 13(1):21898. PubMed ID: 38081928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPDRP: a multimodal framework for drug response prediction with graph transformer.
    Yang Y; Li P
    BMC Bioinformatics; 2023 Dec; 24(1):484. PubMed ID: 38105227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GraphCDR: a graph neural network method with contrastive learning for cancer drug response prediction.
    Liu X; Song C; Huang F; Fu H; Xiao W; Zhang W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34727569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Deep Learning Framework for Predicting Response to Therapy in Cancer.
    Sakellaropoulos T; Vougas K; Narang S; Koinis F; Kotsinas A; Polyzos A; Moss TJ; Piha-Paul S; Zhou H; Kardala E; Damianidou E; Alexopoulos LG; Aifantis I; Townsend PA; Panayiotidis MI; Sfikakis P; Bartek J; Fitzgerald RC; Thanos D; Mills Shaw KR; Petty R; Tsirigos A; Gorgoulis VG
    Cell Rep; 2019 Dec; 29(11):3367-3373.e4. PubMed ID: 31825821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. XGraphCDS: An explainable deep learning model for predicting drug sensitivity from gene pathways and chemical structures.
    Wang Y; Yu X; Gu Y; Li W; Zhu K; Chen L; Tang Y; Liu G
    Comput Biol Med; 2024 Jan; 168():107746. PubMed ID: 38039896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explainable drug sensitivity prediction through cancer pathway enrichment.
    Tang YC; Gottlieb A
    Sci Rep; 2021 Feb; 11(1):3128. PubMed ID: 33542382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ITNR: Inversion Transformer-based Neural Ranking for cancer drug recommendations.
    Sotudian S; Paschalidis IC
    Comput Biol Med; 2024 Apr; 172():108312. PubMed ID: 38503090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How much can deep learning improve prediction of the responses to drugs in cancer cell lines?
    Chen Y; Zhang L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34529029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PANCDR: precise medicine prediction using an adversarial network for cancer drug response.
    Kim J; Park SH; Lee H
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38487849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.