These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Sexual Dimorphism and Retinal Mosaic Diversification following the Evolution of a Violet Receptor in Butterflies. McCulloch KJ; Yuan F; Zhen Y; Aardema ML; Smith G; Llorente-Bousquets J; Andolfatto P; Briscoe AD Mol Biol Evol; 2017 Sep; 34(9):2271-2284. PubMed ID: 28505307 [TBL] [Abstract][Full Text] [Related]
3. True UV color vision in a female butterfly with two UV opsins. Finkbeiner SD; Briscoe AD J Exp Biol; 2021 Sep; 224(18):. PubMed ID: 34587624 [TBL] [Abstract][Full Text] [Related]
4. Contrasting modes of evolution of the visual pigments in Heliconius butterflies. Yuan F; Bernard GD; Le J; Briscoe AD Mol Biol Evol; 2010 Oct; 27(10):2392-405. PubMed ID: 20478921 [TBL] [Abstract][Full Text] [Related]
5. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Briscoe AD; Bybee SM; Bernard GD; Yuan F; Sison-Mangus MP; Reed RD; Warren AD; Llorente-Bousquets J; Chiao CC Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3628-33. PubMed ID: 20133601 [TBL] [Abstract][Full Text] [Related]
6. Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor. McCulloch KJ; Osorio D; Briscoe AD J Exp Biol; 2016 Aug; 219(Pt 15):2377-87. PubMed ID: 27247318 [TBL] [Abstract][Full Text] [Related]
7. Sex-linked gene traffic underlies the acquisition of sexually dimorphic UV color vision in Chakraborty M; Lara AG; Dang A; McCulloch KJ; Rainbow D; Carter D; Ngo LT; Solares E; Said I; Corbett-Detig RB; Gilbert LE; Emerson JJ; Briscoe AD Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2301411120. PubMed ID: 37552755 [TBL] [Abstract][Full Text] [Related]
8. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies. Liénard MA; Bernard GD; Allen A; Lassance JM; Song S; Childers RR; Yu N; Ye D; Stephenson A; Valencia-Montoya WA; Salzman S; Whitaker MRL; Calonje M; Zhang F; Pierce NE Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33547236 [TBL] [Abstract][Full Text] [Related]
9. UV photoreceptors and UV-yellow wing pigments in Heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication. Bybee SM; Yuan F; Ramstetter MD; Llorente-Bousquets J; Reed RD; Osorio D; Briscoe AD Am Nat; 2012 Jan; 179(1):38-51. PubMed ID: 22173459 [TBL] [Abstract][Full Text] [Related]
10. Oviposition behavior is not affected by ultraviolet light in a butterfly with sexually-dimorphic expression of a UV-sensitive opsin. Borrero J; Wright DS; Bacquet CN; Merrill RM Ecol Evol; 2023 Jul; 13(7):e10243. PubMed ID: 37408633 [TBL] [Abstract][Full Text] [Related]
11. A butterfly eye's view of birds. Frentiu FD; Briscoe AD Bioessays; 2008 Nov; 30(11-12):1151-62. PubMed ID: 18937365 [TBL] [Abstract][Full Text] [Related]
12. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. Sison-Mangus MP; Bernard GD; Lampel J; Briscoe AD J Exp Biol; 2006 Aug; 209(Pt 16):3079-90. PubMed ID: 16888057 [TBL] [Abstract][Full Text] [Related]
13. Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies. Papa R; Morrison CM; Walters JR; Counterman BA; Chen R; Halder G; Ferguson L; Chamberlain N; Ffrench-Constant R; Kapan DD; Jiggins CD; Reed RD; McMillan WO BMC Genomics; 2008 Jul; 9():345. PubMed ID: 18647405 [TBL] [Abstract][Full Text] [Related]
14. Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies. Supple MA; Hines HM; Dasmahapatra KK; Lewis JJ; Nielsen DM; Lavoie C; Ray DA; Salazar C; McMillan WO; Counterman BA Genome Res; 2013 Aug; 23(8):1248-57. PubMed ID: 23674305 [TBL] [Abstract][Full Text] [Related]
15. Color discrimination in the red range with only one long-wavelength sensitive opsin. Zaccardi G; Kelber A; Sison-Mangus MP; Briscoe AD J Exp Biol; 2006 May; 209(Pt 10):1944-55. PubMed ID: 16651559 [TBL] [Abstract][Full Text] [Related]
16. Evolution of color vision in pierid butterflies: blue opsin duplication, ommatidial heterogeneity and eye regionalization in Colias erate. Awata H; Wakakuwa M; Arikawa K J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Apr; 195(4):401-8. PubMed ID: 19224222 [TBL] [Abstract][Full Text] [Related]
17. Impact of duplicate gene copies on phylogenetic analysis and divergence time estimates in butterflies. Pohl N; Sison-Mangus MP; Yee EN; Liswi SW; Briscoe AD BMC Evol Biol; 2009 May; 9():99. PubMed ID: 19439087 [TBL] [Abstract][Full Text] [Related]
18. Reconstructing the ancestral butterfly eye: focus on the opsins. Briscoe AD J Exp Biol; 2008 Jun; 211(Pt 11):1805-13. PubMed ID: 18490396 [TBL] [Abstract][Full Text] [Related]
19. Evolution of Sex-Biased Gene Expression and Dosage Compensation in the Eye and Brain of Heliconius Butterflies. Catalán A; Macias-Muñoz A; Briscoe AD Mol Biol Evol; 2018 Sep; 35(9):2120-2134. PubMed ID: 29931127 [TBL] [Abstract][Full Text] [Related]
20. Light environment drives evolution of color vision genes in butterflies and moths. Sondhi Y; Ellis EA; Bybee SM; Theobald JC; Kawahara AY Commun Biol; 2021 Feb; 4(1):177. PubMed ID: 33564115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]