BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 35348821)

  • 1. Sparse testing using genomic prediction improves selection for breeding targets in elite spring wheat.
    Atanda SA; Govindan V; Singh R; Robbins KR; Crossa J; Bentley AR
    Theor Appl Genet; 2022 Jun; 135(6):1939-1950. PubMed ID: 35348821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data.
    Tsai HY; Cericola F; Edriss V; Andersen JR; Orabi J; Jensen JD; Jahoor A; Janss L; Jensen J
    PLoS One; 2020; 15(5):e0232665. PubMed ID: 32401769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The value of early-stage phenotyping for wheat breeding in the age of genomic selection.
    Borrenpohl D; Huang M; Olson E; Sneller C
    Theor Appl Genet; 2020 Aug; 133(8):2499-2520. PubMed ID: 32488300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat.
    Krause MR; González-Pérez L; Crossa J; Pérez-Rodríguez P; Montesinos-López O; Singh RP; Dreisigacker S; Poland J; Rutkoski J; Sorrells M; Gore MA; Mondal S
    G3 (Bethesda); 2019 Apr; 9(4):1231-1247. PubMed ID: 30796086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic assisted selection for enhancing line breeding: merging genomic and phenotypic selection in winter wheat breeding programs with preliminary yield trials.
    Michel S; Ametz C; Gungor H; Akgöl B; Epure D; Grausgruber H; Löschenberger F; Buerstmayr H
    Theor Appl Genet; 2017 Feb; 130(2):363-376. PubMed ID: 27826661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximizing efficiency of genomic selection in CIMMYT's tropical maize breeding program.
    Atanda SA; Olsen M; Burgueño J; Crossa J; Dzidzienyo D; Beyene Y; Gowda M; Dreher K; Zhang X; Prasanna BM; Tongoona P; Danquah EY; Olaoye G; Robbins KR
    Theor Appl Genet; 2021 Jan; 134(1):279-294. PubMed ID: 33037897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic Selection for Processing and End-Use Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program.
    Battenfield SD; Guzmán C; Gaynor RC; Singh RP; Peña RJ; Dreisigacker S; Fritz AK; Poland JA
    Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenomic selection in wheat breeding: prediction of the genotype-by-environment interaction in multi-environment breeding trials.
    Robert P; Goudemand E; Auzanneau J; Oury FX; Rolland B; Heumez E; Bouchet S; Caillebotte A; Mary-Huard T; Le Gouis J; Rincent R
    Theor Appl Genet; 2022 Oct; 135(10):3337-3356. PubMed ID: 35939074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotyping crossing parents and family bulks can facilitate cost-efficient genomic prediction strategies in small-scale line breeding programs.
    Michel S; Löschenberger F; Ametz C; Bürstmayr H
    Theor Appl Genet; 2021 May; 134(5):1575-1586. PubMed ID: 33638651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-enabled prediction for sparse testing in multi-environmental wheat trials.
    Crespo-Herrera L; Howard R; Piepho HP; Pérez-Rodríguez P; Montesinos-Lopez O; Burgueño J; Singh R; Mondal S; Jarquín D; Crossa J
    Plant Genome; 2021 Nov; 14(3):e20151. PubMed ID: 34510790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous selection for grain yield and protein content in genomics-assisted wheat breeding.
    Michel S; Löschenberger F; Ametz C; Pachler B; Sparry E; Bürstmayr H
    Theor Appl Genet; 2019 Jun; 132(6):1745-1760. PubMed ID: 30810763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Prediction with Pedigree and Genotype × Environment Interaction in Spring Wheat Grown in South and West Asia, North Africa, and Mexico.
    Sukumaran S; Crossa J; Jarquin D; Lopes M; Reynolds MP
    G3 (Bethesda); 2017 Feb; 7(2):481-495. PubMed ID: 27903632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments.
    Howard R; Gianola D; Montesinos-López O; Juliana P; Singh R; Poland J; Shrestha S; Pérez-Rodríguez P; Crossa J; Jarquín D
    G3 (Bethesda); 2019 Sep; 9(9):2925-2934. PubMed ID: 31300481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenomic selection in wheat breeding: identification and optimisation of factors influencing prediction accuracy and comparison to genomic selection.
    Robert P; Auzanneau J; Goudemand E; Oury FX; Rolland B; Heumez E; Bouchet S; Le Gouis J; Rincent R
    Theor Appl Genet; 2022 Mar; 135(3):895-914. PubMed ID: 34988629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage.
    Sun J; Poland JA; Mondal S; Crossa J; Juliana P; Singh RP; Rutkoski JE; Jannink JL; Crespo-Herrera L; Velu G; Huerta-Espino J; Sorrells ME
    Theor Appl Genet; 2019 Jun; 132(6):1705-1720. PubMed ID: 30778634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic selection across multiple breeding cycles in applied bread wheat breeding.
    Michel S; Ametz C; Gungor H; Epure D; Grausgruber H; Löschenberger F; Buerstmayr H
    Theor Appl Genet; 2016 Jun; 129(6):1179-89. PubMed ID: 27067826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.
    Cuevas J; Crossa J; Montesinos-López OA; Burgueño J; Pérez-Rodríguez P; de Los Campos G
    G3 (Bethesda); 2017 Jan; 7(1):41-53. PubMed ID: 27793970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic prediction of agronomic traits in wheat using different models and cross-validation designs.
    Haile TA; Walkowiak S; N'Diaye A; Clarke JM; Hucl PJ; Cuthbert RD; Knox RE; Pozniak CJ
    Theor Appl Genet; 2021 Jan; 134(1):381-398. PubMed ID: 33135095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat.
    Juliana P; Montesinos-López OA; Crossa J; Mondal S; González Pérez L; Poland J; Huerta-Espino J; Crespo-Herrera L; Govindan V; Dreisigacker S; Shrestha S; Pérez-Rodríguez P; Pinto Espinosa F; Singh RP
    Theor Appl Genet; 2019 Jan; 132(1):177-194. PubMed ID: 30341493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat.
    Rutkoski J; Poland J; Mondal S; Autrique E; Pérez LG; Crossa J; Reynolds M; Singh R
    G3 (Bethesda); 2016 Sep; 6(9):2799-808. PubMed ID: 27402362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.