BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

586 related articles for article (PubMed ID: 35348849)

  • 1. Lipid metabolic reprogramming by hypoxia-inducible factor-1 in the hypoxic tumour microenvironment.
    Seo J; Yun JE; Kim SJ; Chun YS
    Pflugers Arch; 2022 Jun; 474(6):591-601. PubMed ID: 35348849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia and cancer cell metabolism.
    Huang D; Li C; Zhang H
    Acta Biochim Biophys Sin (Shanghai); 2014 Mar; 46(3):214-9. PubMed ID: 24389642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting the Warburg effect: historical dogma versus current understanding.
    Vaupel P; Multhoff G
    J Physiol; 2021 Mar; 599(6):1745-1757. PubMed ID: 33347611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion.
    Brahimi-Horn C; Pouysségur J
    Bull Cancer; 2006 Aug; 93(8):E73-80. PubMed ID: 16935775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRKAR2B-HIF-1α loop promotes aerobic glycolysis and tumour growth in prostate cancer.
    Xia L; Sun J; Xie S; Chi C; Zhu Y; Pan J; Dong B; Huang Y; Xia W; Sha J; Xue W
    Cell Prolif; 2020 Nov; 53(11):e12918. PubMed ID: 33025691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Hypoxia Dependent Reprogramming of Cancer Metabolism: Role of HIF-1 and Its Potential Therapeutic Implications in Leukemia.
    Pandey S; Singh R; Habib N; Tripathi RM; Kushwaha R; Mahdi AA
    Asian Pac J Cancer Prev; 2024 Apr; 25(4):1121-1134. PubMed ID: 38679971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impairment of HIF-1α-mediated metabolic adaption by NRF2-silencing in breast cancer cells.
    Lee S; Hallis SP; Jung KA; Ryu D; Kwak MK
    Redox Biol; 2019 Jun; 24():101210. PubMed ID: 31078780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomous glucose metabolic reprogramming of tumour cells under hypoxia: opportunities for targeted therapy.
    Huang M; Yang L; Peng X; Wei S; Fan Q; Yang S; Li X; Li B; Jin H; Wu B; Liu J; Li H
    J Exp Clin Cancer Res; 2020 Sep; 39(1):185. PubMed ID: 32928258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ERRα augments HIF-1 signalling by directly interacting with HIF-1α in normoxic and hypoxic prostate cancer cells.
    Zou C; Yu S; Xu Z; Wu D; Ng CF; Yao X; Yew DT; Vanacker JM; Chan FL
    J Pathol; 2014 May; 233(1):61-73. PubMed ID: 24425001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell metabolism under microenvironmental low oxygen tension levels in stemness, proliferation and pluripotency.
    De Miguel MP; Alcaina Y; de la Maza DS; Lopez-Iglesias P
    Curr Mol Med; 2015; 15(4):343-59. PubMed ID: 25941818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crosstalk between HIFs and mitochondrial dysfunctions in cancer development.
    Bao X; Zhang J; Huang G; Yan J; Xu C; Dou Z; Sun C; Zhang H
    Cell Death Dis; 2021 Feb; 12(2):215. PubMed ID: 33637686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology.
    Kierans SJ; Taylor CT
    J Physiol; 2021 Jan; 599(1):23-37. PubMed ID: 33006160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic Targeting Hypoxia-Inducible Factor (HIF-1) in Cancer: Cutting Gordian Knot of Cancer Cell Metabolism.
    Sharma A; Sinha S; Shrivastava N
    Front Genet; 2022; 13():849040. PubMed ID: 35432450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia and energetic tumour metabolism.
    Brahimi-Horn MC; Bellot G; Pouysségur J
    Curr Opin Genet Dev; 2011 Feb; 21(1):67-72. PubMed ID: 21074987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and Development of Cyclic Peptide Inhibitors of Hypoxia Inducible Factors 1 and 2 That Disrupt Hypoxia-Response Signaling in Cancer Cells.
    Ball AT; Mohammed S; Doigneaux C; Gardner RM; Easton JW; Turner S; Essex JW; Pairaudeau G; Tavassoli A
    J Am Chem Soc; 2024 Apr; 146(13):8877-8886. PubMed ID: 38503564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of AGPAT2, an enzyme involved in the glycerophospholipid/triacylglycerol biosynthesis pathway, is directly regulated by HIF-1 and promotes survival and etoposide resistance of cancer cells under hypoxia.
    Triantafyllou EA; Georgatsou E; Mylonis I; Simos G; Paraskeva E
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Sep; 1863(9):1142-1152. PubMed ID: 29908837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decursin promotes HIF-1α proteasomal degradation and immune responses in hypoxic tumour microenvironment.
    Ge Y; Yoon SH; Jang H; Jeong JH; Lee YM
    Phytomedicine; 2020 Nov; 78():153318. PubMed ID: 32896707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIF: a master regulator of nutrient availability and metabolic cross-talk in the tumor microenvironment.
    Missiaen R; Lesner NP; Simon MC
    EMBO J; 2023 Mar; 42(6):e112067. PubMed ID: 36808622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIF-1α switches the functionality of TGF-β signaling via changing the partners of smads to drive glucose metabolic reprogramming in non-small cell lung cancer.
    Huang Y; Chen Z; Lu T; Bi G; Li M; Liang J; Hu Z; Zheng Y; Yin J; Xi J; Lin Z; Zhan C; Jiang W; Wang Q; Tan L
    J Exp Clin Cancer Res; 2021 Dec; 40(1):398. PubMed ID: 34930376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.