BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 35348861)

  • 1. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes.
    Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S
    Eur Radiol; 2022 Sep; 32(9):6118-6125. PubMed ID: 35348861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning reconstruction for the evaluation of neuroforaminal stenosis using 1.5T cervical spine MRI: comparison with 3T MRI without deep learning reconstruction.
    Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S
    Neuroradiology; 2022 Oct; 64(10):2077-2083. PubMed ID: 35918450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution Deep Learning Reconstruction Cervical Spine 1.5T MRI: Improved Interobserver Agreement in Evaluations of Neuroforaminal Stenosis Compared to Conventional Deep Learning Reconstruction.
    Yasaka K; Uehara S; Kato S; Watanabe Y; Tajima T; Akai H; Yoshioka N; Akahane M; Ohtomo K; Abe O; Kiryu S
    J Imaging Inform Med; 2024 Apr; ():. PubMed ID: 38671337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Deep Learning Reconstruction on Evaluating Cervical Spinal Canal Stenosis With Computed Tomography.
    Ohtake Y; Yasaka K; Hamada A; Fujita N; Abe O
    J Comput Assist Tomogr; 2023 Nov-Dec 01; 47(6):996-1001. PubMed ID: 37948377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-learning-reconstructed high-resolution 3D cervical spine MRI for foraminal stenosis evaluation.
    Jardon M; Tan ET; Chazen JL; Sahr M; Wen Y; Schneider B; Sneag DB
    Skeletal Radiol; 2023 Apr; 52(4):725-732. PubMed ID: 36269331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image quality and lesion detectability of deep learning-accelerated T2-weighted Dixon imaging of the cervical spine.
    Seo G; Lee SJ; Park DH; Paeng SH; Koerzdoerfer G; Nickel MD; Sung J
    Skeletal Radiol; 2023 Dec; 52(12):2451-2459. PubMed ID: 37233758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based reconstruction for acceleration of lumbar spine MRI: a prospective comparison with standard MRI.
    Yoo H; Yoo RE; Choi SH; Hwang I; Lee JY; Seo JY; Koh SY; Choi KS; Kang KM; Yun TJ
    Eur Radiol; 2023 Dec; 33(12):8656-8668. PubMed ID: 37498386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of deep learning reconstructed high-resolution 3D lumbar spine MRI.
    Sun S; Tan ET; Mintz DN; Sahr M; Endo Y; Nguyen J; Lebel RM; Carrino JA; Sneag DB
    Eur Radiol; 2022 Sep; 32(9):6167-6177. PubMed ID: 35322280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utility of accelerated T2-weighted turbo spin-echo imaging with deep learning reconstruction in female pelvic MRI: a multi-reader study.
    Lee EJ; Hwang J; Park S; Bae SH; Lim J; Chang YW; Hong SS; Oh E; Nam BD; Jeong J; Sung JK; Nickel D
    Eur Radiol; 2023 Nov; 33(11):7697-7706. PubMed ID: 37314472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-learning reconstruction for the evaluation of lumbar spinal stenosis in computed tomography.
    Miyo R; Yasaka K; Hamada A; Sakamoto N; Hosoi R; Mizuki M; Abe O
    Medicine (Baltimore); 2023 Jun; 102(23):e33910. PubMed ID: 37335676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic evaluation of deep learning accelerated lumbar spine MRI.
    Awan KM; Goncalves Filho ALM; Tabari A; Applewhite BP; Lang M; Lo WC; Sellers R; Kollasch P; Clifford B; Nickel D; Husseni J; Rapalino O; Schaefer P; Cauley S; Huang SY; Conklin J
    Neuroradiol J; 2024 Jun; 37(3):323-331. PubMed ID: 38195418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Productivity Using Deep Learning-assisted Reporting for Lumbar Spine MRI.
    Lim DSW; Makmur A; Zhu L; Zhang W; Cheng AJL; Sia DSY; Eide SE; Ong HY; Jagmohan P; Tan WC; Khoo VM; Wong YM; Thian YL; Baskar S; Teo EC; Algazwi DAR; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST; Hallinan JTPD
    Radiology; 2022 Oct; 305(1):160-166. PubMed ID: 35699577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers.
    Kidoh M; Shinoda K; Kitajima M; Isogawa K; Nambu M; Uetani H; Morita K; Nakaura T; Tateishi M; Yamashita Y; Yamashita Y
    Magn Reson Med Sci; 2020 Aug; 19(3):195-206. PubMed ID: 31484849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of osseous cervical foraminal stenosis in spinal radiculopathy using susceptibility-weighted magnetic resonance imaging.
    Engel G; Bender YY; Adams LC; Boker SM; Fahlenkamp UL; Wagner M; Diederichs G; Hamm B; Makowski MR
    Eur Radiol; 2019 Apr; 29(4):1855-1862. PubMed ID: 30324384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning reconstruction for lumbar spine MRI acceleration: a prospective study.
    Tang H; Hong M; Yu L; Song Y; Cao M; Xiang L; Zhou Y; Suo S
    Eur Radiol Exp; 2024 Jun; 8(1):67. PubMed ID: 38902467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical efficacy of motion-insensitive imaging technique with deep learning reconstruction to improve image quality in cervical spine MR imaging.
    Song YS; Lee IS; Hwang M; Jang K; Wang X; Fung M
    Br J Radiol; 2024 Mar; 97(1156):812-819. PubMed ID: 38366622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A practical MRI grading system for cervical foraminal stenosis based on oblique sagittal images.
    Park HJ; Kim SS; Lee SY; Park NH; Chung EC; Rho MH; Kwon HJ; Kook SH
    Br J Radiol; 2013 May; 86(1025):20120515. PubMed ID: 23410800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The diagnostic value of magnetic resonance imaging measurements for assessing cervical spinal canal stenosis.
    Rüegg TB; Wicki AG; Aebli N; Wisianowsky C; Krebs J
    J Neurosurg Spine; 2015 Mar; 22(3):230-6. PubMed ID: 25525959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning for automated, interpretable classification of lumbar spinal stenosis and facet arthropathy from axial MRI.
    Bharadwaj UU; Christine M; Li S; Chou D; Pedoia V; Link TM; Chin CT; Majumdar S
    Eur Radiol; 2023 May; 33(5):3435-3443. PubMed ID: 36920520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI.
    Hallinan JTPD; Zhu L; Yang K; Makmur A; Algazwi DAR; Thian YL; Lau S; Choo YS; Eide SE; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST
    Radiology; 2021 Jul; 300(1):130-138. PubMed ID: 33973835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.