BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35348887)

  • 1. Context-specific effects of NOX4 inactivation in acute myeloid leukemia (AML).
    Demircan MB; Schnoeder TM; Mgbecheta PC; Schröder K; Böhmer FD; Heidel FH
    J Cancer Res Clin Oncol; 2022 Aug; 148(8):1983-1990. PubMed ID: 35348887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH oxidase-generated hydrogen peroxide induces DNA damage in mutant FLT3-expressing leukemia cells.
    Stanicka J; Russell EG; Woolley JF; Cotter TG
    J Biol Chem; 2015 Apr; 290(15):9348-61. PubMed ID: 25697362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular localization of the FLT3-ITD oncogene plays a significant role in the production of NOX- and p22
    Moloney JN; Stanicka J; Cotter TG
    Leuk Res; 2017 Jan; 52():34-42. PubMed ID: 27870947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NOX4-driven ROS formation mediates PTP inactivation and cell transformation in FLT3ITD-positive AML cells.
    Jayavelu AK; Müller JP; Bauer R; Böhmer SA; Lässig J; Cerny-Reiterer S; Sperr WR; Valent P; Maurer B; Moriggl R; Schröder K; Shah AM; Fischer M; Scholl S; Barth J; Oellerich T; Berg T; Serve H; Frey S; Fischer T; Heidel FH; Böhmer FD
    Leukemia; 2016 Feb; 30(2):473-83. PubMed ID: 26308771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miR-155 promotes FLT3-ITD-induced myeloproliferative disease through inhibition of the interferon response.
    Wallace JA; Kagele DA; Eiring AM; Kim CN; Hu R; Runtsch MC; Alexander M; Huffaker TB; Lee SH; Patel AB; Mosbruger TL; Voth WP; Rao DS; Miles RR; Round JL; Deininger MW; O'Connell RM
    Blood; 2017 Jun; 129(23):3074-3086. PubMed ID: 28432220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NOX-driven ROS formation in cell transformation of FLT3-ITD-positive AML.
    Jayavelu AK; Moloney JN; Böhmer FD; Cotter TG
    Exp Hematol; 2016 Dec; 44(12):1113-1122. PubMed ID: 27666490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model.
    Li L; Piloto O; Nguyen HB; Greenberg K; Takamiya K; Racke F; Huso D; Small D
    Blood; 2008 Apr; 111(7):3849-58. PubMed ID: 18245664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dnmt3a deletion cooperates with the Flt3/ITD mutation to drive leukemogenesis in a murine model.
    Poitras JL; Heiser D; Li L; Nguyen B; Nagai K; Duffield AS; Gamper C; Small D
    Oncotarget; 2016 Oct; 7(43):69124-69135. PubMed ID: 27636998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/ PTPRJ.
    Godfrey R; Arora D; Bauer R; Stopp S; Müller JP; Heinrich T; Böhmer SA; Dagnell M; Schnetzke U; Scholl S; Östman A; Böhmer FD
    Blood; 2012 May; 119(19):4499-511. PubMed ID: 22438257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4-Hydroxyphenyl Retinamide Preferentially Targets FLT3 Mutated Acute Myeloid Leukemia via ROS Induction and NF-κB Inhibition.
    Zhao XY; Zhang RR; Ye Q; Qiu F; Xu HY; Wei FG; Zhang H
    Curr Med Sci; 2020 Oct; 40(5):810-816. PubMed ID: 33123895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin enhances sorafenib-induced cytotoxicity in FLT3-ITD acute myeloid leukemia cells by redox modification.
    Tian T; Li J; Li Y; Lu YX; Tang YL; Wang H; Zheng F; Shi D; Long Q; Chen M; Garcia-Manero G; Hu Y; Qin L; Deng W
    Theranostics; 2019; 9(13):3768-3779. PubMed ID: 31281512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells.
    Wang Y; Xu Y; Li S; Liu J; Xing Y; Xing H; Tian Z; Tang K; Rao Q; Wang M; Wang J
    J Hematol Oncol; 2018 May; 11(1):60. PubMed ID: 29716633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNMT3A Haploinsufficiency Transforms FLT3ITD Myeloproliferative Disease into a Rapid, Spontaneous, and Fully Penetrant Acute Myeloid Leukemia.
    Meyer SE; Qin T; Muench DE; Masuda K; Venkatasubramanian M; Orr E; Suarez L; Gore SD; Delwel R; Paietta E; Tallman MS; Fernandez H; Melnick A; Le Beau MM; Kogan S; Salomonis N; Figueroa ME; Grimes HL
    Cancer Discov; 2016 May; 6(5):501-15. PubMed ID: 27016502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of CD45 in FLT3-ITD mice results in a myeloproliferative phenotype, cortical porosity, and ectopic bone formation.
    Kresinsky A; Schnöder TM; Jacobsen ID; Rauner M; Hofbauer LC; Ast V; König R; Hoffmann B; Svensson CM; Figge MT; Hilger I; Heidel FH; Böhmer FD; Müller JP
    Oncogene; 2019 Jun; 38(24):4773-4787. PubMed ID: 30820040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ULK1 inhibition as a targeted therapeutic strategy for FLT3-ITD-mutated acute myeloid leukemia.
    Hwang DY; Eom JI; Jang JE; Jeung HK; Chung H; Kim JS; Cheong JW; Min YH
    J Exp Clin Cancer Res; 2020 May; 39(1):85. PubMed ID: 32393312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear factor of activated T-cells, NFATC1, governs FLT3
    Solovey M; Wang Y; Michel C; Metzeler KH; Herold T; Göthert JR; Ellenrieder V; Hessmann E; Gattenlöhner S; Neubauer A; Pavlinic D; Benes V; Rupp O; Burchert A
    J Hematol Oncol; 2019 Jul; 12(1):72. PubMed ID: 31286998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent Inhibition of Pim and FLT3 Kinases Enhances Apoptosis of FLT3-ITD Acute Myeloid Leukemia Cells through Increased Mcl-1 Proteasomal Degradation.
    Kapoor S; Natarajan K; Baldwin PR; Doshi KA; Lapidus RG; Mathias TJ; Scarpa M; Trotta R; Davila E; Kraus M; Huszar D; Tron AE; Perrotti D; Baer MR
    Clin Cancer Res; 2018 Jan; 24(1):234-247. PubMed ID: 29074603
    [No Abstract]   [Full Text] [Related]  

  • 18. FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia.
    Long J; Jia MY; Fang WY; Chen XJ; Mu LL; Wang ZY; Shen Y; Xiang RF; Wang LN; Wang L; Jiang CH; Jiang JL; Zhang WJ; Sun YD; Chang L; Gao WH; Wang Y; Li JM; Hong DL; Liang AB; Hu J
    Blood; 2020 Apr; 135(17):1472-1483. PubMed ID: 32315388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Activity of the Redox-Modulating Compound Setanaxib (GKT137831) with Cytotoxic Agents in the Killing of Acute Myeloid Leukemia Cells.
    Demircan MB; Mgbecheta PC; Kresinsky A; Schnoeder TM; Schröder K; Heidel FH; Böhmer FD
    Antioxidants (Basel); 2022 Mar; 11(3):. PubMed ID: 35326163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oncogenic FLT3-ITD supports autophagy via ATF4 in acute myeloid leukemia.
    Heydt Q; Larrue C; Saland E; Bertoli S; Sarry JE; Besson A; Manenti S; Joffre C; Mansat-De Mas V
    Oncogene; 2018 Feb; 37(6):787-797. PubMed ID: 29059168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.