BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35349280)

  • 1. Mid-infrared HgTe Colloidal Quantum Dot LEDs.
    Shen X; Peterson JC; Guyot-Sionnest P
    ACS Nano; 2022 May; 16(5):7301-7308. PubMed ID: 35349280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-Temperature 15% Efficient Mid-Infrared HgTe Colloidal Quantum Dot Photodiodes.
    Peterson JC; Guyot-Sionnest P
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19163-19169. PubMed ID: 37022942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors.
    Ackerman MM; Tang X; Guyot-Sionnest P
    ACS Nano; 2018 Jul; 12(7):7264-7271. PubMed ID: 29975502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical properties of HgTe colloidal quantum dots.
    Lhuillier E; Keuleyan S; Guyot-Sionnest P
    Nanotechnology; 2012 May; 23(17):175705. PubMed ID: 22481378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-Quantum-Dot Infrared Light-Emitting Diodes.
    Yang Z; Voznyy O; Liu M; Yuan M; Ip AH; Ahmed OS; Levina L; Kinge S; Hoogland S; Sargent EH
    ACS Nano; 2015 Dec; 9(12):12327-33. PubMed ID: 26575976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-Engineered HgTe Colloidal Quantum Dot Solids for Infrared Photodetectors.
    Yang J; Hu H; Lv Y; Yuan M; Wang B; He Z; Chen S; Wang Y; Hu Z; Yu M; Zhang X; He J; Zhang J; Liu H; Hsu HY; Tang J; Song H; Lan X
    Nano Lett; 2022 Apr; 22(8):3465-3472. PubMed ID: 35435694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level.
    Pradhan S; Di Stasio F; Bi Y; Gupta S; Christodoulou S; Stavrinadis A; Konstantatos G
    Nat Nanotechnol; 2019 Jan; 14(1):72-79. PubMed ID: 30510279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient HgTe colloidal quantum dot-sensitized near-infrared photovoltaic cells.
    Im SH; Kim HJ; Kim SW; Kim SW; Seok SI
    Nanoscale; 2012 Mar; 4(5):1581-4. PubMed ID: 22301811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive Colloidal Quantum-Dot Upconverters for Extended Short-Wave Infrared.
    Mu G; Rao T; Zhang S; Wen C; Chen M; Hao Q; Tang X
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45553-45561. PubMed ID: 36166596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncooled High Detectivity Mid-Infrared Photoconductor Using HgTe Quantum Dots and Nanoantennas.
    Caillas A; Guyot-Sionnest P
    ACS Nano; 2024 Mar; 18(12):8952-8960. PubMed ID: 38466148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency.
    Barkhouse DA; Pattantyus-Abraham AG; Levina L; Sargent EH
    ACS Nano; 2008 Nov; 2(11):2356-62. PubMed ID: 19206403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm.
    Keuleyan SE; Guyot-Sionnest P; Delerue C; Allan G
    ACS Nano; 2014 Aug; 8(8):8676-82. PubMed ID: 25117471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature.
    Lin X; Dai X; Pu C; Deng Y; Niu Y; Tong L; Fang W; Jin Y; Peng X
    Nat Commun; 2017 Oct; 8(1):1132. PubMed ID: 29070867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertically Stacked Intraband Quantum Dot Devices for Mid-Wavelength Infrared Photodetection.
    Hafiz SB; Al Mahfuz MM; Ko DK
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):937-943. PubMed ID: 33372770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Obviating Ligand Exchange Preserves the Intact Surface of HgTe Colloidal Quantum Dots and Enhances Performance of Short Wavelength Infrared Photodetectors.
    Sergeeva KA; Hu S; Sokolova AV; Portniagin AS; Chen D; Kershaw SV; Rogach AL
    Adv Mater; 2024 Apr; 36(17):e2306518. PubMed ID: 37572367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Synthesis Se-Stabilization Enables Defect and Doping Engineering of HgTe Colloidal Quantum Dots.
    Yu M; Yang J; Zhang X; Yuan M; Zhang J; Gao L; Tang J; Lan X
    Adv Mater; 2024 Jul; 36(27):e2311830. PubMed ID: 38501495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-emitting quantum dot transistors: emission at high charge carrier densities.
    Schornbaum J; Zakharko Y; Held M; Thiemann S; Gannott F; Zaumseil J
    Nano Lett; 2015 Mar; 15(3):1822-8. PubMed ID: 25652433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes.
    Shen H; Cao W; Shewmon NT; Yang C; Li LS; Xue J
    Nano Lett; 2015 Feb; 15(2):1211-6. PubMed ID: 25580801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Colloidal-Quantum-Dot Integrated U-Shape Micro-Light-Emitting-Diode and Its Photonic Characteristics.
    Jao YM; Huang BM; Chang C; Lin FZ; Lee GY; Huang CP; Kuo HC; Shih MH; Lin CC
    Nanomaterials (Basel); 2024 May; 14(11):. PubMed ID: 38869563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The "energy gap law" for mid-infrared nanocrystals.
    Kamath A; Guyot-Sionnest P
    J Chem Phys; 2024 May; 160(20):. PubMed ID: 38785281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.