BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 35349769)

  • 1. Thermochemical Conversion of Plastic Waste into Fuels, Chemicals, and Value-Added Materials: A Critical Review and Outlooks.
    Yang RX; Jan K; Chen CT; Chen WT; Wu KC
    ChemSusChem; 2022 Jun; 15(11):e202200171. PubMed ID: 35349769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspectives on Thermochemical Recycling of End-of-Life Plastic Wastes to Alternative Fuels.
    Nanda S; Sarker TR; Kang K; Li D; Dalai AK
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals.
    Pang S
    Biotechnol Adv; 2019; 37(4):589-597. PubMed ID: 30447327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of plastic waste into fuels: A critical review.
    Li N; Liu H; Cheng Z; Yan B; Chen G; Wang S
    J Hazard Mater; 2022 Feb; 424(Pt B):127460. PubMed ID: 34653868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review.
    Papari S; Bamdad H; Berruti F
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developments in waste tyre thermochemical conversion processes: gasification, pyrolysis and liquefaction.
    Nkosi N; Muzenda E; Gorimbo J; Belaid M
    RSC Adv; 2021 Mar; 11(20):11844-11871. PubMed ID: 35423733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermochemical conversion of municipal solid waste into energy and hydrogen: a review.
    Nandhini R; Berslin D; Sivaprakash B; Rajamohan N; Vo DN
    Environ Chem Lett; 2022; 20(3):1645-1669. PubMed ID: 35350388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustainable ethylene production: Recovery from plastic waste via thermochemical processes.
    Kim SW; Kim YT; Tsang YF; Lee J
    Sci Total Environ; 2023 Dec; 903():166789. PubMed ID: 37666332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on synergistic pyrolysis and kinetics of mixed plastics based on spent fluid-catalytic-cracking catalyst.
    Wang K; Bian H; Lai Q; Chen Y; Li Z; Hao Y; Yan L; Wang C; Tian X
    Environ Sci Pollut Res Int; 2023 May; 30(25):66665-66682. PubMed ID: 37099103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on value-addition to plastic waste towards achieving a circular economy.
    Kumar M; Bhujbal SK; Kohli K; Prajapati R; Sharma BK; Sawarkar AD; Abhishek K; Bolan S; Ghosh P; Kirkham MB; Padhye LP; Pandey A; Vithanage M; Bolan N
    Sci Total Environ; 2024 Apr; 921():171106. PubMed ID: 38387564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor.
    Kremer I; Tomić T; Katančić Z; Erceg M; Papuga S; Vuković JP; Schneider DR
    J Environ Manage; 2021 Oct; 296():113145. PubMed ID: 34271358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advancement on photocatalytic plastic upcycling.
    Ran J; Talebian-Kiakalaieh A; Zhang S; Hashem EM; Guo M; Qiao SZ
    Chem Sci; 2024 Jan; 15(5):1611-1637. PubMed ID: 38303948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physico-chemical properties of excavated plastic from landfill mining and current recycling routes.
    Canopoli L; Fidalgo B; Coulon F; Wagland ST
    Waste Manag; 2018 Jun; 76():55-67. PubMed ID: 29622377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress and perspective for conversion of plastic wastes into valuable chemicals.
    Zheng K; Wu Y; Hu Z; Wang S; Jiao X; Zhu J; Sun Y; Xie Y
    Chem Soc Rev; 2023 Jan; 52(1):8-29. PubMed ID: 36468343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermochemical conversion of microalgal biomass into biofuels: a review.
    Chen WH; Lin BJ; Huang MY; Chang JS
    Bioresour Technol; 2015 May; 184():314-327. PubMed ID: 25479688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastic Waste Conversion by Leveraging Renewable Photo/Electro-Catalytic Technologies.
    Li J; Ma HP; Zhao G; Huang G; Sun W; Peng C
    ChemSusChem; 2024 May; 17(10):e202301352. PubMed ID: 38226954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in liquid fuel production from plastic waste via pyrolysis: Emphasis on polyolefins and polystyrene.
    Valizadeh S; Valizadeh B; Seo MW; Choi YJ; Lee J; Chen WH; Lin KA; Park YK
    Environ Res; 2024 Apr; 246():118154. PubMed ID: 38218520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons.
    Ryu HW; Kim DH; Jae J; Lam SS; Park ED; Park YK
    Bioresour Technol; 2020 Aug; 310():123473. PubMed ID: 32389430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic Strategies for the Upcycling of Polyolefin Plastic Waste.
    Xu S; Tang J; Fu L
    Langmuir; 2024 Feb; 40(8):3984-4000. PubMed ID: 38364857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives.
    Song C; Zhang C; Zhang S; Lin H; Kim Y; Ramakrishnan M; Du Y; Zhang Y; Zheng H; Barceló D
    Sci Total Environ; 2020 Dec; 749():141972. PubMed ID: 33370925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.