These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35349810)

  • 1. Climate change: Aerial insectivores struggle to keep pace with earlier pulses of nutritious aquatic foods.
    Clark R; Hobson K
    Curr Biol; 2022 Mar; 32(6):R267-R269. PubMed ID: 35349810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-Ecosystem Fluxes of Pesticides from Prairie Wetlands Mediated by Aquatic Insect Emergence: Implications for Terrestrial Insectivores.
    Kraus JM; Kuivila KM; Hladik ML; Shook N; Mushet DM; Dowdy K; Harrington R
    Environ Toxicol Chem; 2021 Aug; 40(8):2282-2296. PubMed ID: 33978264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change shifts the timing of nutritional flux from aquatic insects.
    Shipley JR; Twining CW; Mathieu-Resuge M; Parmar TP; Kainz M; Martin-Creuzburg D; Weber C; Winkler DW; Graham CH; Matthews B
    Curr Biol; 2022 Mar; 32(6):1342-1349.e3. PubMed ID: 35172126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-fledging quality and recruitment in an aerial insectivore reflect dynamics of insects, wetlands and climate.
    Berzins LL; Mazer AK; Morrissey CA; Clark RG
    Oecologia; 2021 May; 196(1):89-100. PubMed ID: 33885979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Birds advancing lay dates with warming springs face greater risk of chick mortality.
    Shipley JR; Twining CW; Taff CC; Vitousek MN; Flack A; Winkler DW
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25590-25594. PubMed ID: 32989166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity and distribution of aquatic insects in Southern Brazil wetlands: implications for biodiversity conservation in a Neotropical region.
    Maltchik L; Dalzochio MS; Stenert C; Rolon AS
    Rev Biol Trop; 2012 Mar; 60(1):273-89. PubMed ID: 22458224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional invertebrate prey groups reflect dietary responses to phenology and farming activity and pest control services in three sympatric species of aerially foraging insectivorous birds.
    Orłowski G; Karg J; Karg G
    PLoS One; 2014; 9(12):e114906. PubMed ID: 25506696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological energetics of an abundant aerial insectivore, the Purple Martin.
    Kelly JF; Bridge ES; Frick WF; Chilson PB
    PLoS One; 2013; 8(9):e76616. PubMed ID: 24086755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A climate adaptation strategy for Mai Po Inner Deep Bay Ramsar site: Steppingstone to climate proofing the East Asian-Australasian Flyway.
    Wikramanayake E; Or C; Costa F; Wen X; Cheung F; Shapiro A
    PLoS One; 2020; 15(10):e0239945. PubMed ID: 33085699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of Supplementary Food on the Breeding Performance of Eurasian Reed Warblers Acrocephalus scirpaceus; Implications for Climate Change Impacts.
    Vafidis JO; Vaughan IP; Jones TH; Facey RJ; Parry R; Thomas RJ
    PLoS One; 2016; 11(7):e0159933. PubMed ID: 27467171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change: potential implications for Ireland's biodiversity.
    Donnelly A
    Int J Biometeorol; 2018 Jul; 62(7):1221-1228. PubMed ID: 29532257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change Points in the Population Trends of Aerial-Insectivorous Birds in North America: Synchronized in Time across Species and Regions.
    Smith AC; Hudson MA; Downes CM; Francis CM
    PLoS One; 2015; 10(7):e0130768. PubMed ID: 26147572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A climate change vulnerability assessment of California's at-risk birds.
    Gardali T; Seavy NE; DiGaudio RT; Comrack LA
    PLoS One; 2012; 7(3):e29507. PubMed ID: 22396726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preserving the Mediterranean bird flyways: Assessment and prioritization of 38 main wetlands under human and climate threats in Sardinia and Sicily (Italy).
    Ferrarini A; Celada C; Gustin M
    Sci Total Environ; 2021 Jan; 751():141556. PubMed ID: 32882548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate change adaptation: putting principles into practice.
    Ausden M
    Environ Manage; 2014 Oct; 54(4):685-98. PubMed ID: 24363138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Land-use change increases climatic vulnerability of migratory birds: Insights from integrated population modelling.
    Zhao Q; Arnold TW; Devries JH; Howerter DW; Clark RG; Weegman MD
    J Anim Ecol; 2019 Oct; 88(10):1625-1637. PubMed ID: 31173349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insect Declines in the Anthropocene.
    Wagner DL
    Annu Rev Entomol; 2020 Jan; 65():457-480. PubMed ID: 31610138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of human-induced environmental change in wetlands on aquatic animals.
    Sievers M; Hale R; Parris KM; Swearer SE
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):529-554. PubMed ID: 28929570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Community-level phenological response to climate change.
    Ovaskainen O; Skorokhodova S; Yakovleva M; Sukhov A; Kutenkov A; Kutenkova N; Shcherbakov A; Meyke E; Delgado Mdel M
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13434-9. PubMed ID: 23901098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term declines of European insectivorous bird populations and potential causes.
    Bowler DE; Heldbjerg H; Fox AD; de Jong M; Böhning-Gaese K
    Conserv Biol; 2019 Oct; 33(5):1120-1130. PubMed ID: 30912605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.