These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35350337)

  • 1. Enhanced Performance of Protonic Solid Oxide Steam Electrolysis Cell of Zr-Rich Side BaZr
    Toriumi H; Jeong S; Kitano S; Habazaki H; Aoki Y
    ACS Omega; 2022 Mar; 7(11):9944-9950. PubMed ID: 35350337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of thin film fuel cells with Zr-rich BaZr
    Jeong S; Kobayashi T; Kuroda K; Kwon H; Zhu C; Habazaki H; Aoki Y
    RSC Adv; 2018 Jul; 8(46):26309-26317. PubMed ID: 35541976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Coupling of Proton Conductors BaZr
    Li W; Guan B; Ma L; Tian H; Liu X
    ACS Appl Mater Interfaces; 2019 May; 11(20):18323-18330. PubMed ID: 31051074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unlocking the Potential of A-Site Ca-Doped LaCo
    Li H; Wang W; Wang L; Wang M; Park KY; Lee T; Heyden A; Ding D; Chen F
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43732-43744. PubMed ID: 37673786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between hydrogen production rate, current, and electrode overpotential in a solid oxide electrolysis cell with La
    Walch G; Opitz AK; Kogler S; Fleig J
    Monatsh Chem; 2014; 145(7):1055-1061. PubMed ID: 26166894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing Ceramic Proton Conductor Membranes for Use in Steam Electrolysis.
    Leonard K; Deibert W; Ivanova ME; Meulenberg WA; Ishihara T; Matsumoto H
    Membranes (Basel); 2020 Nov; 10(11):. PubMed ID: 33198304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Oxygen Evolution Rate and Anti-interfacial Delamination Property of the SrCo
    Wu L; Zheng H; Yang X; Qi H; Tu B; Zang C; Jia L; Qiu P
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37906033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tape Casting of High-Performance Low-Temperature Solid Oxide Cells with Thin La
    Gao Z; Wang H; Miller E; Liu Q; Senn D; Barnett S
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7115-7124. PubMed ID: 28165214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen Electrode PrBa
    Bai H; Zhang Y; Chu J; Zhou Q; Lan H; Zhou J
    ACS Appl Mater Interfaces; 2023 Aug; 15(32):38581-38591. PubMed ID: 37535454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film.
    Chen Y; Zhang Y; Baker J; Majumdar P; Yang Z; Han M; Chen F
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5130-6. PubMed ID: 24621230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tri-Doped BaCeO
    Rajendran S; Thangavel NK; Ding H; Ding Y; Ding D; Reddy Arava LM
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38275-38284. PubMed ID: 32786238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode-Supported Protonic Ceramic Electrolysis Cells for Electrochemically Promoted Ammonia Synthesis at Intermediate Temperatures.
    Okazaki M; Otomo J
    ACS Omega; 2023 Oct; 8(43):40299-40308. PubMed ID: 37929123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Efficiency Direct Ammonia Fuel Cells Based on BaZr
    Aoki Y; Yamaguchi T; Kobayashi S; Kowalski D; Zhu C; Habazaki H
    Glob Chall; 2018 Jan; 2(1):1700088. PubMed ID: 31565304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate-Zirconate Electrolytes on Compositionally Gradient Anodes.
    Bae K; Lee S; Jang DY; Kim HJ; Lee H; Shin D; Son JW; Shim JH
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9097-103. PubMed ID: 27029066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Stable Protonic Ceramic Electrolysis Cells Based on Air Electrodes with Finger-Like Pores Current Collection Layers Running in High-Steam-Content Air.
    Wang Z; Miao X; Ye X; Wen Z
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):45035-45044. PubMed ID: 37704019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Electrochemical Performance by Microstructural Optimization of the Nanocrystalline Functional Oxygen Electrode Layer for Solid Oxide Cells.
    Kamecki B; Cempura G; Jasiński P; Wang SF; Molin S
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57449-57459. PubMed ID: 36520672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization-Induced Interface and Sr Segregation of in Situ Assembled La
    Chen K; Li N; Ai N; Cheng Y; Rickard WD; Jiang SP
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31729-31737. PubMed ID: 27808496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust catalytically-activated LSM-BCZY-based composite steam electrodes for proton ceramic electrolysis cells.
    Bausá N; Serra JM
    RSC Adv; 2019 Jul; 9(36):20677-20686. PubMed ID: 35515552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromium deposition and poisoning at La0.6Sr0.4Co0.2Fe0.8O(3-δ) oxygen electrodes of solid oxide electrolysis cells.
    Wei B; Chen K; Zhao L; Lü Z; Jiang SP
    Phys Chem Chem Phys; 2015 Jan; 17(3):1601-9. PubMed ID: 25435014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical properties of La
    Hou Y; Wang Y; Wang L; Zhang Q; Chou KC
    RSC Adv; 2021 Sep; 11(51):32077-32084. PubMed ID: 35495512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.