These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 35350388)
1. Thermochemical conversion of municipal solid waste into energy and hydrogen: a review. Nandhini R; Berslin D; Sivaprakash B; Rajamohan N; Vo DN Environ Chem Lett; 2022; 20(3):1645-1669. PubMed ID: 35350388 [TBL] [Abstract][Full Text] [Related]
2. Pyrolysis and Gasification of a Real Refuse-Derived Fuel (RDF): The Potential Use of the Products under a Circular Economy Vision. Alfè M; Gargiulo V; Porto M; Migliaccio R; Le Pera A; Sellaro M; Pellegrino C; Abe AA; Urciuolo M; Caputo P; Calandra P; Loise V; Rossi CO; Ruoppolo G Molecules; 2022 Nov; 27(23):. PubMed ID: 36500207 [TBL] [Abstract][Full Text] [Related]
3. COVID-19 and industrial waste mitigation via thermochemical technologies towards a circular economy: A state-of-the-art review. Felix CB; Ubando AT; Chen WH; Goodarzi V; Ashokkumar V J Hazard Mater; 2022 Feb; 423(Pt B):127215. PubMed ID: 34844348 [TBL] [Abstract][Full Text] [Related]
4. Recent evolution in thermochemical transformation of municipal solid wastes to alternate fuels. Sarker TR; Khatun ML; Ethen DZ; Ali MR; Islam MS; Chowdhury S; Rahman KS; Sayem NS; Akm RS Heliyon; 2024 Sep; 10(17):e37105. PubMed ID: 39296224 [TBL] [Abstract][Full Text] [Related]
5. Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst. Kaewpengkrow P; Atong D; Sricharoenchaikul V Environ Technol; 2012 Dec; 33(22-24):2489-95. PubMed ID: 23437645 [TBL] [Abstract][Full Text] [Related]
6. Thermochemical Conversion of Plastic Waste into Fuels, Chemicals, and Value-Added Materials: A Critical Review and Outlooks. Yang RX; Jan K; Chen CT; Chen WT; Wu KC ChemSusChem; 2022 Jun; 15(11):e202200171. PubMed ID: 35349769 [TBL] [Abstract][Full Text] [Related]
7. A technical review of bioenergy and resource recovery from municipal solid waste. Nanda S; Berruti F J Hazard Mater; 2021 Feb; 403():123970. PubMed ID: 33265011 [TBL] [Abstract][Full Text] [Related]
8. Perspectives on Thermochemical Recycling of End-of-Life Plastic Wastes to Alternative Fuels. Nanda S; Sarker TR; Kang K; Li D; Dalai AK Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444877 [TBL] [Abstract][Full Text] [Related]
9. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF. Hwang IH; Kobayashi J; Kawamoto K Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576 [TBL] [Abstract][Full Text] [Related]
10. Post-consumer textile thermochemical recycling to fuels and biocarbon: A critical review. Athanasopoulos P; Zabaniotou A Sci Total Environ; 2022 Aug; 834():155387. PubMed ID: 35461931 [TBL] [Abstract][Full Text] [Related]
11. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Ansah E; Wang L; Shahbazi A Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928 [TBL] [Abstract][Full Text] [Related]
12. A review of waste-to-hydrogen conversion technologies for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development. Alaedini AH; Tourani HK; Saidi M J Environ Manage; 2023 Mar; 329():117077. PubMed ID: 36565498 [TBL] [Abstract][Full Text] [Related]
13. Valorization of biochars from pinewood gasification and municipal solid waste torrefaction as peat substitutes. Gascó G; Álvarez ML; Paz-Ferreiro J; Miguel GS; Méndez A Environ Sci Pollut Res Int; 2018 Sep; 25(26):26461-26469. PubMed ID: 29987467 [TBL] [Abstract][Full Text] [Related]
14. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review. Mello M; Rutto H; Seodigeng T J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581 [TBL] [Abstract][Full Text] [Related]
15. Thermochemical conversion of waste tyres-a review. Labaki M; Jeguirim M Environ Sci Pollut Res Int; 2017 Apr; 24(11):9962-9992. PubMed ID: 27796970 [TBL] [Abstract][Full Text] [Related]
16. Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy. Chew KW; Chia SR; Chia WY; Cheah WY; Munawaroh HSH; Ong WJ Environ Pollut; 2021 Jun; 278():116836. PubMed ID: 33689952 [TBL] [Abstract][Full Text] [Related]
17. Municipal Solid and Plastic Waste Co-pyrolysis Towards Sustainable Renewable Fuel and Carbon Materials: A Comprehensive Review. Razzak SA Chem Asian J; 2024 Sep; 19(17):e202400307. PubMed ID: 38880993 [TBL] [Abstract][Full Text] [Related]
18. Waste to energy: An experimental study of utilizing the agricultural residue, MSW, and e-waste available in Bangladesh for pyrolysis conversion. Islam MK; Khatun MS; Arefin MA; Islam MR; Hassan M Heliyon; 2021 Dec; 7(12):e08530. PubMed ID: 34917811 [TBL] [Abstract][Full Text] [Related]
19. Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: Summary of recent techno-economic analyses. Shahabuddin M; Krishna BB; Bhaskar T; Perkins G Bioresour Technol; 2020 Mar; 299():122557. PubMed ID: 31918971 [TBL] [Abstract][Full Text] [Related]
20. Progress in thermochemical conversion of aquatic weeds in shellfish aquaculture for biofuel generation: Technical and economic perspectives. Azwar E; Wan Mahari WA; Rastegari H; Tabatabaei M; Peng W; Tsang YF; Park YK; Chen WH; Lam SS Bioresour Technol; 2022 Jan; 344(Pt A):126202. PubMed ID: 34710598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]