BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35350442)

  • 1. Understanding of Förster Resonance Energy Transfer (FRET) in Ionic Materials.
    Jalihal A; Le T; Macchi S; Krehbiel H; Bashiru M; Forson M; Siraj N
    Sustain Chem; 2021 Dec; 2(4):564-575. PubMed ID: 35350442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRET-based carbazole-fluorescein ionic nanoparticle for use as an effective bioimaging agent.
    Jalihal A; Krehbiel H; Macchi S; Forson M; Bashiru M; Le T; Kornelsen C; Siraj N
    Biofunctional Mater; 2023; 1(1):. PubMed ID: 38173822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer.
    Patwari J; Sardar S; Liu B; Lemmens P; Pal SK
    Beilstein J Nanotechnol; 2017; 8():1705-1713. PubMed ID: 28875108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.
    Lee E; Kim C; Jang J
    Chemistry; 2013 Jul; 19(31):10280-6. PubMed ID: 23765414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Förster resonance energy transfer in dye-sensitized solar cells.
    Basham JI; Mor GK; Grimes CA
    ACS Nano; 2010 Mar; 4(3):1253-8. PubMed ID: 20307105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cascade Förster Resonance Energy Transfer Studies for Enhancement of Light Harvesting on Dye-Sensitized Solar Cells.
    Efa MT; Huang JC; Imae T
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxazine dye-conjugated dna oligonucleotides: Förster resonance energy transfer in view of molecular dye-DNA interactions.
    Kupstat A; Ritschel T; Kumke MU
    Bioconjug Chem; 2011 Dec; 22(12):2546-57. PubMed ID: 22073970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas-phase Förster resonance energy transfer in mass-selected and trapped ions.
    Langeland J; Lindkvist TT; Kjær C; Nielsen SB
    Mass Spectrom Rev; 2024; 43(3):477-499. PubMed ID: 36514825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stepwise Energy Transfer: Near-Infrared Persistent Luminescence from Doped Polymeric Systems.
    Lin F; Wang H; Cao Y; Yu R; Liang G; Huang H; Mu Y; Yang Z; Chi Z
    Adv Mater; 2022 Apr; 34(15):e2108333. PubMed ID: 35137460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Gate Width Size on Lifetime-Based Förster Resonance Energy Transfer Parameter Estimation.
    Chen SJ; Sinsuebphon N; Intes X
    Photonics; 2015 Dec; 2(4):1027-1042. PubMed ID: 26557647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-Principles Computational Modeling of Fluorescence Resonance Energy Transfer in Co-Sensitized Dye Solar Cells.
    Pastore M; Angelis FD
    J Phys Chem Lett; 2012 Aug; 3(16):2146-53. PubMed ID: 26295762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homo- and Heterodimeric Dyes for Dye-Sensitized Solar Cells: Panchromatic Light Absorption and Modulated Open Circuit Potential.
    Sil MC; Sudhakar V; Singh AK; Kavungathodi MFM; Nithyanandhan J
    Chempluschem; 2018 Nov; 83(11):998-1007. PubMed ID: 31950728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distance and temperature dependency in nonoverlapping and conventional Förster resonance energy-transfer.
    Vuojola J; Hyppänen I; Nummela M; Kankare J; Soukka T
    J Phys Chem B; 2011 Nov; 115(46):13685-94. PubMed ID: 22007728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency Förster resonance energy transfer in solid-state dye sensitized solar cells.
    Mor GK; Basham J; Paulose M; Kim S; Varghese OK; Vaish A; Yoriya S; Grimes CA
    Nano Lett; 2010 Jul; 10(7):2387-94. PubMed ID: 20568825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer.
    Qiu X; Xu J; Cardoso Dos Santos M; Hildebrandt N
    Acc Chem Res; 2022 Feb; 55(4):551-564. PubMed ID: 35084817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving effective terminal exciton delivery in quantum dot antenna-sensitized multistep DNA photonic wires.
    Spillmann CM; Ancona MG; Buckhout-White S; Algar WR; Stewart MH; Susumu K; Huston AL; Goldman ER; Medintz IL
    ACS Nano; 2013 Aug; 7(8):7101-18. PubMed ID: 23844838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas-phase Förster resonance energy transfer in mass-selected ions with methylene or peptide linkers between two dyes: a concerted dance of charges.
    Kjær C; Zhao Y; Stockett MH; Chen L; Hansen K; Nielsen SB
    Phys Chem Chem Phys; 2020 May; 22(19):11095-11100. PubMed ID: 32373846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A potential carcinogenic pyrene derivative under Förster resonance energy transfer to various energy acceptors in nanoscopic environments.
    Banerjee S; Goswami N; Pal SK
    Chemphyschem; 2013 Oct; 14(15):3581-93. PubMed ID: 24038989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.