BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 35350706)

  • 1. A visual approach towards forward collision warning for autonomous vehicles on Malaysian public roads.
    Wong MK; Connie T; Goh MKO; Wong LP; Teh PS; Choo AL
    F1000Res; 2021; 10():928. PubMed ID: 35350706
    [No Abstract]   [Full Text] [Related]  

  • 2. A case study of unavoidable accidents of autonomous vehicles.
    Sun Z; Lin M; Chen W; Dai B; Ying P; Zhou Q
    Traffic Inj Prev; 2024; 25(1):8-13. PubMed ID: 37722829
    [No Abstract]   [Full Text] [Related]  

  • 3. The safety potential of enhanced lateral vehicle positioning.
    Sternlund S
    Traffic Inj Prev; 2021; 22(2):139-146. PubMed ID: 33556264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field effectiveness evaluation of advanced driver assistance systems.
    Spicer R; Vahabaghaie A; Bahouth G; Drees L; Martinez von Bülow R; Baur P
    Traffic Inj Prev; 2018; 19(sup2):S91-S95. PubMed ID: 30543454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experiences of model year 2011 Dodge and Jeep owners with collision avoidance and related technologies.
    Cicchino JB; McCartt AT
    Traffic Inj Prev; 2015; 16():298-303. PubMed ID: 24983299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-vehicle warnings for work zone and related rear-end collisions: A driving simulator experiment.
    Hang J; Yan X; Li X; Duan K
    Accid Anal Prev; 2022 Sep; 174():106768. PubMed ID: 35820314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Expected Crash and Injury Reduction from Production Forward Collision and Lane Departure Warning Systems.
    Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S109-14. PubMed ID: 26436219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of collision warning characteristics on driving behaviors and safety in connected vehicle environments.
    Zhao W; Gong S; Zhao D; Liu F; Sze NN; Huang H
    Accid Anal Prev; 2023 Jun; 186():107053. PubMed ID: 37030178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safe Driving Distance and Speed for Collision Avoidance in Connected Vehicles.
    Elsagheer Mohamed SA; Alshalfan KA; Al-Hagery MA; Ben Othman MT
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and Risk Analysis with Lane-Changing Decision Algorithms for Autonomous Vehicles.
    Mechernene A; Judalet V; Chaibet A; Boukhnifer M
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A trial of retrofitted advisory collision avoidance technology in government fleet vehicles.
    Thompson JP; Mackenzie JRR; Dutschke JK; Baldock MRJ; Raftery SJ; Wall J
    Accid Anal Prev; 2018 Jun; 115():34-40. PubMed ID: 29544135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observed activation status of lane departure warning and forward collision warning of Honda vehicles at dealership service centers.
    Reagan IJ; McCartt AT
    Traffic Inj Prev; 2016 Nov; 17(8):827-32. PubMed ID: 26891465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collision-avoidance lane change control method for enhancing safety for connected vehicle platoon in mixed traffic environment.
    Ma Y; Liu Q; Fu J; Liufu K; Li Q
    Accid Anal Prev; 2023 May; 184():106999. PubMed ID: 36780868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous emergency braking systems adapted to snowy road conditions improve drivers' perceived safety and trust.
    Koglbauer I; Holzinger J; Eichberger A; Lex C
    Traffic Inj Prev; 2018 Apr; 19(3):332-337. PubMed ID: 29227692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rear-end collision warning of connected automated vehicles based on a novel stochastic local multivehicle optimal velocity model.
    Wen J; Wu C; Zhang R; Xiao X; Nv N; Shi Y
    Accid Anal Prev; 2020 Dec; 148():105800. PubMed ID: 33128992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A freeway vehicle early warning method based on risk map: Enhancing traffic safety through global perspective characterization of driving risk.
    Cui C; An B; Li L; Qu X; Manda H; Ran B
    Accid Anal Prev; 2024 Aug; 203():107611. PubMed ID: 38733809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research into Autonomous Vehicles Following and Obstacle Avoidance Based on Deep Reinforcement Learning Method under Map Constraints.
    Li Z; Yuan S; Yin X; Li X; Tang S
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Vision-Based Driver Assistance System with Forward Collision and Overtaking Detection.
    Lin HY; Dai JM; Wu LT; Chen LQ
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32916970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel collision warning system based on the visual road environment schema: An examination from vehicle and driver characteristics.
    Li Z; Yu B; Wang Y; Chen Y; Kong Y; Xu Y
    Accid Anal Prev; 2023 Sep; 190():107154. PubMed ID: 37343457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Law compliance decision making for autonomous vehicles on highways.
    Ma X; Song L; Zhao C; Wu S; Yu W; Wang W; Yang L; Wang H
    Accid Anal Prev; 2024 Sep; 204():107620. PubMed ID: 38823082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.