These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 35350998)
1. An integrated omics analysis reveals the gene expression profiles of maize, castor bean, and rapeseed for seed oil biosynthesis. Liu N; Liu J; Fan S; Liu H; Zhou XR; Hua W; Zheng M BMC Plant Biol; 2022 Mar; 22(1):153. PubMed ID: 35350998 [TBL] [Abstract][Full Text] [Related]
2. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
3. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos. Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824 [TBL] [Abstract][Full Text] [Related]
4. An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus. Zhang Z; Dunwell JM; Zhang YM BMC Plant Biol; 2018 Dec; 18(1):328. PubMed ID: 30514240 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923 [TBL] [Abstract][Full Text] [Related]
6. Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus. Yao M; Guan M; Yang Q; Huang L; Xiong X; Jan HU; Voss-Fels KP; Werner CR; He X; Qian W; Snowdon RJ; Guan C; Hua W; Qian L Theor Appl Genet; 2021 May; 134(5):1545-1555. PubMed ID: 33677638 [TBL] [Abstract][Full Text] [Related]
7. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. Ding LN; Gu SL; Zhu FG; Ma ZY; Li J; Li M; Wang Z; Tan XL BMC Plant Biol; 2020 Jan; 20(1):21. PubMed ID: 31931712 [TBL] [Abstract][Full Text] [Related]
8. Genomic Characterization and Expressional Profiles of Autophagy-Related Genes ( Han B; Xu H; Feng Y; Xu W; Cui Q; Liu A Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31952322 [TBL] [Abstract][Full Text] [Related]
9. High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop. Zhang Y; Mulpuri S; Liu A Photosynth Res; 2016 May; 128(2):125-40. PubMed ID: 26589321 [TBL] [Abstract][Full Text] [Related]
10. Epigenetic regulation of seed-specific gene expression by DNA methylation valleys in castor bean. Han B; Wu D; Zhang Y; Li DZ; Xu W; Liu A BMC Biol; 2022 Mar; 20(1):57. PubMed ID: 35227267 [TBL] [Abstract][Full Text] [Related]
12. Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant. Venegas-Calerón M; Sánchez R; Salas JJ; Garcés R; Martínez-Force E Planta; 2016 Jul; 244(1):245-58. PubMed ID: 27056057 [TBL] [Abstract][Full Text] [Related]
13. Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds. Lu S; Sturtevant D; Aziz M; Jin C; Li Q; Chapman KD; Guo L Plant J; 2018 Jun; 94(6):915-932. PubMed ID: 29752761 [TBL] [Abstract][Full Text] [Related]
14. Effects of specific organs on seed oil accumulation in Brassica napus L. Liu J; Hua W; Yang H; Guo T; Sun X; Wang X; Liu G; Wang H Plant Sci; 2014 Oct; 227():60-8. PubMed ID: 25219307 [TBL] [Abstract][Full Text] [Related]
15. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp. Kilaru A; Cao X; Dabbs PB; Sung HJ; Rahman MM; Thrower N; Zynda G; Podicheti R; Ibarra-Laclette E; Herrera-Estrella L; Mockaitis K; Ohlrogge JB BMC Plant Biol; 2015 Aug; 15():203. PubMed ID: 26276496 [TBL] [Abstract][Full Text] [Related]
16. Functional Genome Analyses Reveal the Molecular Basis of Oil Accumulation in Developing Seeds of Castor Beans. Yu A; Zhou Z; Chen Y; Sun J; Li P; Gu X; Liu A Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203263 [TBL] [Abstract][Full Text] [Related]
17. Global Gene Expression of Seed Coat Tissues Reveals a Potential Mechanism of Regulating Seed Size Formation in Castor Bean. Yu A; Wang Z; Zhang Y; Li F; Liu A Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30875738 [TBL] [Abstract][Full Text] [Related]
18. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata). Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660 [TBL] [Abstract][Full Text] [Related]
19. Interaction between phenylpropane metabolism and oil accumulation in the developing seed of Brassica napus revealed by high temporal-resolution transcriptomes. Yu L; Liu D; Yin F; Yu P; Lu S; Zhang Y; Zhao H; Lu C; Yao X; Dai C; Yang QY; Guo L BMC Biol; 2023 Sep; 21(1):202. PubMed ID: 37775748 [TBL] [Abstract][Full Text] [Related]
20. Light induces gene expression to enhance the synthesis of storage reserves in Brassica napus L. embryos. Tan H; Qi X; Li Y; Wang X; Zhou J; Liu X; Shi X; Ye W; Xiang X Plant Mol Biol; 2020 Jul; 103(4-5):457-471. PubMed ID: 32274640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]