These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 35351109)
1. Combining adult with pediatric patient data to develop a clinical decision support tool intended for children: leveraging machine learning to model heterogeneity. Sabharwal P; Hurst JH; Tejwani R; Hobbs KT; Routh JC; Goldstein BA BMC Med Inform Decis Mak; 2022 Mar; 22(1):84. PubMed ID: 35351109 [TBL] [Abstract][Full Text] [Related]
2. Artificial intelligence-based clinical decision support in pediatrics. Ramgopal S; Sanchez-Pinto LN; Horvat CM; Carroll MS; Luo Y; Florin TA Pediatr Res; 2023 Jan; 93(2):334-341. PubMed ID: 35906317 [TBL] [Abstract][Full Text] [Related]
3. Predictive Modeling to Identify Children With Complex Health Needs At Risk for Hospitalization. Ming DY; Zhao C; Tang X; Chung RJ; Rogers UA; Stirling A; Economou-Zavlanos NJ; Goldstein BA Hosp Pediatr; 2023 May; 13(5):357-369. PubMed ID: 37092278 [TBL] [Abstract][Full Text] [Related]
4. Development and Performance of a Clinical Decision Support Tool to Inform Resource Utilization for Elective Operations. Goldstein BA; Cerullo M; Krishnamoorthy V; Blitz J; Mureebe L; Webster W; Dunston F; Stirling A; Gagnon J; Scales CD JAMA Netw Open; 2020 Nov; 3(11):e2023547. PubMed ID: 33136133 [TBL] [Abstract][Full Text] [Related]
5. Using machine learning models to predict oxygen saturation following ventilator support adjustment in critically ill children: A single center pilot study. Ghazal S; Sauthier M; Brossier D; Bouachir W; Jouvet PA; Noumeir R PLoS One; 2019; 14(2):e0198921. PubMed ID: 30785881 [TBL] [Abstract][Full Text] [Related]
6. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
7. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
8. Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment. Wong A; Young AT; Liang AS; Gonzales R; Douglas VC; Hadley D JAMA Netw Open; 2018 Aug; 1(4):e181018. PubMed ID: 30646095 [TBL] [Abstract][Full Text] [Related]
9. A Machine Learning Approach to Predicting Need for Hospitalization for Pediatric Asthma Exacerbation at the Time of Emergency Department Triage. Patel SJ; Chamberlain DB; Chamberlain JM Acad Emerg Med; 2018 Dec; 25(12):1463-1470. PubMed ID: 30382605 [TBL] [Abstract][Full Text] [Related]
10. State of the Art of Machine Learning-Enabled Clinical Decision Support in Intensive Care Units: Literature Review. Hong N; Liu C; Gao J; Han L; Chang F; Gong M; Su L JMIR Med Inform; 2022 Mar; 10(3):e28781. PubMed ID: 35238790 [TBL] [Abstract][Full Text] [Related]
11. Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study. Hur S; Min JY; Yoo J; Kim K; Chung CR; Dykes PC; Cha WC J Med Internet Res; 2021 Aug; 23(8):e23508. PubMed ID: 34382940 [TBL] [Abstract][Full Text] [Related]
12. Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support. Banerjee I; Sofela M; Yang J; Chen JH; Shah NH; Ball R; Mushlin AI; Desai M; Bledsoe J; Amrhein T; Rubin DL; Zamanian R; Lungren MP JAMA Netw Open; 2019 Aug; 2(8):e198719. PubMed ID: 31390040 [TBL] [Abstract][Full Text] [Related]
13. Using Data-Driven Machine Learning to Predict Unplanned ICU Transfers with Critical Deterioration from Electronic Health Records. Shi L; Muthu N; Shaeffer GP; Sun Y; Ruiz Herrera VM; Tsui FR Stud Health Technol Inform; 2022 Jun; 290():660-664. PubMed ID: 35673099 [TBL] [Abstract][Full Text] [Related]
14. Clinical Characteristics and Prognostic Factors for Intensive Care Unit Admission of Patients With COVID-19: Retrospective Study Using Machine Learning and Natural Language Processing. Izquierdo JL; Ancochea J; ; Soriano JB J Med Internet Res; 2020 Oct; 22(10):e21801. PubMed ID: 33090964 [TBL] [Abstract][Full Text] [Related]
15. Development of a Machine Learning Model Predicting an ICU Admission for Patients with Elective Surgery and Its Prospective Validation in Clinical Practice. Jauk S; Kramer D; Stark G; Hasiba K; Leodolter W; Schulz S; Kainz J Stud Health Technol Inform; 2019 Aug; 264():173-177. PubMed ID: 31437908 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning Model for Risk Prediction of Community-Acquired Acute Kidney Injury Hospitalization From Electronic Health Records: Development and Validation Study. Hsu CN; Liu CL; Tain YL; Kuo CY; Lin YC J Med Internet Res; 2020 Aug; 22(8):e16903. PubMed ID: 32749223 [TBL] [Abstract][Full Text] [Related]
17. The Feasibility of a Machine Learning Approach in Predicting Successful Ventilator Mode Shifting for Adult Patients in the Medical Intensive Care Unit. Cheng KH; Tan MC; Chang YJ; Lin CW; Lin YH; Chang TM; Kuo LK Medicina (Kaunas); 2022 Mar; 58(3):. PubMed ID: 35334536 [No Abstract] [Full Text] [Related]
18. Machine learning combining CT findings and clinical parameters improves prediction of length of stay and ICU admission in torso trauma. Staziaki PV; Wu D; Rayan JC; Santo IDO; Nan F; Maybury A; Gangasani N; Benador I; Saligrama V; Scalera J; Anderson SW Eur Radiol; 2021 Jul; 31(7):5434-5441. PubMed ID: 33475772 [TBL] [Abstract][Full Text] [Related]
19. A statistically rigorous deep neural network approach to predict mortality in trauma patients admitted to the intensive care unit. Ahmed FS; Ali L; Joseph BA; Ikram A; Ul Mustafa R; Bukhari SAC J Trauma Acute Care Surg; 2020 Oct; 89(4):736-742. PubMed ID: 32773672 [TBL] [Abstract][Full Text] [Related]
20. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. Kong G; Lin K; Hu Y BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]