BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35351174)

  • 1. Orthogonal control of gene expression in plants using synthetic promoters and CRISPR-based transcription factors.
    Kar S; Bordiya Y; Rodriguez N; Kim J; Gardner EC; Gollihar JD; Sung S; Ellington AD
    Plant Methods; 2022 Mar; 18(1):42. PubMed ID: 35351174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli.
    Cress BF; Jones JA; Kim DC; Leitz QD; Englaender JA; Collins SM; Linhardt RJ; Koffas MA
    Nucleic Acids Res; 2016 May; 44(9):4472-85. PubMed ID: 27079979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas.
    Farzadfard F; Perli SD; Lu TK
    ACS Synth Biol; 2013 Oct; 2(10):604-13. PubMed ID: 23977949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A library of synthetic transcription activator-like effector-activated promoters for coordinated orthogonal gene expression in plants.
    Brückner K; Schäfer P; Weber E; Grützner R; Marillonnet S; Tissier A
    Plant J; 2015 May; 82(4):707-16. PubMed ID: 25846505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GB_SynP: A Modular dCas9-Regulated Synthetic Promoter Collection for Fine-Tuned Recombinant Gene Expression in Plants.
    Moreno-Giménez E; Selma S; Calvache C; Orzáez D
    ACS Synth Biol; 2022 Sep; 11(9):3037-3048. PubMed ID: 36044643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orthogonal Modular Gene Repression in Escherichia coli Using Engineered CRISPR/Cas9.
    Didovyk A; Borek B; Hasty J; Tsimring L
    ACS Synth Biol; 2016 Jan; 5(1):81-8. PubMed ID: 26390083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPRi-based circuits to control gene expression in plants.
    Khan MA; Herring G; Zhu JY; Oliva M; Fourie E; Johnston B; Zhang Z; Potter J; Pineda L; Pflueger J; Swain T; Pflueger C; Lloyd JPB; Secco D; Small I; Kidd BN; Lister R
    Nat Biotechnol; 2024 May; ():. PubMed ID: 38769424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An update and perspectives on the use of promoters in plant genetic engineering.
    Kummari D; Palakolanu SR; Kishor PBK; Bhatnagar-Mathur P; Singam P; Vadez V; Sharma KK
    J Biosci; 2020; 45():. PubMed ID: 33097676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What Have We Learned About Synthetic Promoter Construction?
    Rushton PJ
    Methods Mol Biol; 2016; 1482():1-13. PubMed ID: 27557757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells.
    Ede C; Chen X; Lin MY; Chen YY
    ACS Synth Biol; 2016 May; 5(5):395-404. PubMed ID: 26883397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. gDesigner: computational design of synthetic gRNAs for Cas12a-based transcriptional repression in mammalian cells.
    Crone MA; MacDonald JT; Freemont PS; Siciliano V
    NPJ Syst Biol Appl; 2022 Sep; 8(1):34. PubMed ID: 36114193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Libraries of Synthetic TALE-Activated Promoters: Methods and Applications.
    Schreiber T; Tissier A
    Methods Enzymol; 2016; 576():361-78. PubMed ID: 27480693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Synthetic Promoters for Gene Circuits in Mammalian Cells.
    Saxena P; Bojar D; Fussenegger M
    Methods Mol Biol; 2017; 1651():263-273. PubMed ID: 28801913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard.
    Vazquez-Vilar M; Bernabé-Orts JM; Fernandez-Del-Carmen A; Ziarsolo P; Blanca J; Granell A; Orzaez D
    Plant Methods; 2016; 12():10. PubMed ID: 26839579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positional effects on efficiency of CRISPR/Cas9-based transcriptional activation in rice plants.
    Gong X; Zhang T; Xing J; Wang R; Zhao Y
    aBIOTECH; 2020 Jan; 1(1):1-5. PubMed ID: 36305003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of Pol III U6 promoters for gene knockdown and knockout in Plutella xylostella.
    Huang Y; Wang Y; Zeng B; Liu Z; Xu X; Meng Q; Huang Y; Yang G; Vasseur L; Gurr GM; You M
    Insect Biochem Mol Biol; 2017 Oct; 89():71-78. PubMed ID: 28890398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology.
    Blount BA; Weenink T; Vasylechko S; Ellis T
    PLoS One; 2012; 7(3):e33279. PubMed ID: 22442681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA Polymerase II Activity of Type 3 Pol III Promoters.
    Gao Z; Herrera-Carrillo E; Berkhout B
    Mol Ther Nucleic Acids; 2018 Sep; 12():135-145. PubMed ID: 30195753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular control of multiple pathways using engineered orthogonal T7 polymerases.
    Temme K; Hill R; Segall-Shapiro TH; Moser F; Voigt CA
    Nucleic Acids Res; 2012 Sep; 40(17):8773-81. PubMed ID: 22743271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic TAL effectors for targeted enhancement of transgene expression in plants.
    Liu W; Rudis MR; Peng Y; Mazarei M; Millwood RJ; Yang JP; Xu W; Chesnut JD; Stewart CN
    Plant Biotechnol J; 2014 May; 12(4):436-46. PubMed ID: 24373379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.