These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Impaired clearance of accumulated lysosomal glycogen in advanced Pompe disease despite high-level vector-mediated transgene expression. Sun B; Zhang H; Bird A; Li S; Young SP; Koeberl DD J Gene Med; 2009 Oct; 11(10):913-20. PubMed ID: 19621331 [TBL] [Abstract][Full Text] [Related]
10. Generation of induced pluripotent stem (iPS) cells derived from a murine model of Pompe disease and differentiation of Pompe-iPS cells into skeletal muscle cells. Kawagoe S; Higuchi T; Meng XL; Shimada Y; Shimizu H; Hirayama R; Fukuda T; Chang H; Nakahata T; Fukada S; Ida H; Kobayashi H; Ohashi T; Eto Y Mol Genet Metab; 2011; 104(1-2):123-8. PubMed ID: 21703893 [TBL] [Abstract][Full Text] [Related]
11. Electrical characteristics of rat skeletal muscle in immaturity, adulthood and after sciatic nerve injury, and their relation to muscle fiber size. Ahad MA; Fogerson PM; Rosen GD; Narayanaswami P; Rutkove SB Physiol Meas; 2009 Dec; 30(12):1415-27. PubMed ID: 19887721 [TBL] [Abstract][Full Text] [Related]
12. Assessing disease severity in Pompe disease: the roles of a urinary glucose tetrasaccharide biomarker and imaging techniques. Young SP; Piraud M; Goldstein JL; Zhang H; Rehder C; Laforet P; Kishnani PS; Millington DS; Bashir MR; Bali DS Am J Med Genet C Semin Med Genet; 2012 Feb; 160C(1):50-8. PubMed ID: 22252961 [TBL] [Abstract][Full Text] [Related]
13. Murine muscle cell models for Pompe disease and their use in studying therapeutic approaches. Takikita S; Myerowitz R; Zaal K; Raben N; Plotz PH Mol Genet Metab; 2009 Apr; 96(4):208-17. PubMed ID: 19167256 [TBL] [Abstract][Full Text] [Related]
14. Differential muscular glycogen clearance after enzyme replacement therapy in a mouse model of Pompe disease. Hawes ML; Kennedy W; O'Callaghan MW; Thurberg BL Mol Genet Metab; 2007 Aug; 91(4):343-51. PubMed ID: 17572127 [TBL] [Abstract][Full Text] [Related]
15. Reveglucosidase alfa (BMN 701), an IGF2-Tagged rhAcid α-Glucosidase, Improves Respiratory Functional Parameters in a Murine Model of Pompe Disease. Peng J; Dalton J; Butt M; Tracy K; Kennedy D; Haroldsen P; Cahayag R; Zoog S; O'Neill CA; Tsuruda LS J Pharmacol Exp Ther; 2017 Feb; 360(2):313-323. PubMed ID: 27856936 [TBL] [Abstract][Full Text] [Related]
16. Muscle diffusion MRI reveals autophagic buildup in a mouse model for Pompe disease. Rohm M; Russo G; Helluy X; Froeling M; Umathum V; Südkamp N; Manahan-Vaughan D; Rehmann R; Forsting J; Jacobsen F; Roos A; Shin Y; Schänzer A; Vorgerd M; Schlaffke L Sci Rep; 2023 Dec; 13(1):22822. PubMed ID: 38129558 [TBL] [Abstract][Full Text] [Related]
17. Suppression of mTORC1 activation in acid-α-glucosidase-deficient cells and mice is ameliorated by leucine supplementation. Shemesh A; Wang Y; Yang Y; Yang GS; Johnson DE; Backer JM; Pessin JE; Zong H Am J Physiol Regul Integr Comp Physiol; 2014 Nov; 307(10):R1251-9. PubMed ID: 25231351 [TBL] [Abstract][Full Text] [Related]
18. [Effects of intermittent hypoxia on dielectric properties of rat gastrocnemius]. Ma Q; Wang L; Zhang HB; Chen L Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2009 Nov; 25(4):500-4. PubMed ID: 21158043 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of systemic follistatin as an adjuvant to stimulate muscle repair and improve motor function in Pompe mice. Foley JW; Bercury SD; Finn P; Cheng SH; Scheule RK; Ziegler RJ Mol Ther; 2010 Sep; 18(9):1584-91. PubMed ID: 20551907 [TBL] [Abstract][Full Text] [Related]
20. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Raben N; Hill V; Shea L; Takikita S; Baum R; Mizushima N; Ralston E; Plotz P Hum Mol Genet; 2008 Dec; 17(24):3897-908. PubMed ID: 18782848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]