These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 35352)

  • 1. Surface change of biological membranes as a possible regulator of membrane-bound enzymes.
    Wojtczak L; Nałecz MJ
    Eur J Biochem; 1979 Feb; 94(1):99-107. PubMed ID: 35352
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of the surface potential on the Michaelis constant of membrane-bound enzymes: effect of membrane solubilization.
    Wojtczak L; Famulski KS; Nałecz MJ; Zborowski J
    FEBS Lett; 1982 Mar; 139(2):221-4. PubMed ID: 6281066
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of phospholipid composition on the surface potential of liposomes and the activity of enzymes incorporated.
    Nałecz MJ; Zborowski J; Famulski KS; Wojtczak L
    Eur J Biochem; 1980 Nov; 112(1):75-80. PubMed ID: 6778695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of L-thyroxine on kynurenine 3-hydroxylase, monoamine oxidase, and rotenone-insensitive NADH-cytochrome c reductase in mitochondrial outer membrane.
    Okamoto H
    Biochem Biophys Res Commun; 1971 May; 43(4):827-33. PubMed ID: 5563754
    [No Abstract]   [Full Text] [Related]  

  • 5. NADH- and NADPH-linked aquacobalamin reductases occur in both mitochondrial and microsomal membranes of rat liver.
    Watanabe F; Nakano Y; Maruno S; Tachikake N; Tamura Y; Kitaoka S
    Biochem Biophys Res Commun; 1989 Dec; 165(2):675-9. PubMed ID: 2597154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenacetin and the liver. The influence of phenacetin in acute and chronic doses on membrane-bound mitochondrial enzymes in the rat.
    Raab W; Kramar R; Moerth C
    Enzyme; 1976; 21(3):275-8. PubMed ID: 1278138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme response of traumatized tissue after intracortical injection into 5 day old rat brain.
    Robinson N
    J Neurol Neurosurg Psychiatry; 1972 Dec; 35(6):865-72. PubMed ID: 4405286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aging and brain enzymes.
    McGeer EG; Fibiger HC; McGeer PL; Wickson V
    Exp Gerontol; 1971 Dec; 6(6):391-6. PubMed ID: 4400970
    [No Abstract]   [Full Text] [Related]  

  • 9. The surface charge of rat liver mitochondria and their membranes. Clarification of some controversies concerning mitochondrial structure.
    Heidrich HG; Stahn R; Hannig K
    J Cell Biol; 1970 Jul; 46(1):137-50. PubMed ID: 4318844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H; Wakai M; Ozawa T
    Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The solubilization of a SHAM sensitive, cyanide insensitive ubiquinol oxidase from Trypanosoma brucei.
    Tielens AG; Hill GC
    J Parasitol; 1985 Jun; 71(3):384-6. PubMed ID: 4009352
    [No Abstract]   [Full Text] [Related]  

  • 12. Differential inhibition of drug metabolism by hepatic microsomal lipids of neonatal and adult rats.
    Iba MM; Soyka LF; Schulman MP
    Biochem Biophys Res Commun; 1975 Aug; 65(3):870-6. PubMed ID: 239714
    [No Abstract]   [Full Text] [Related]  

  • 13. Semidehydroascorbate as a product of the enzymic conversion of dopamine to norepinephrine. Coupling of semidehydroascorbate reductase to dopamine-beta-hydroxylase.
    Diliberto EJ; Allen PL
    Mol Pharmacol; 1980 May; 17(3):421-6. PubMed ID: 7393218
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of mixed-function amine oxidases in N-hydroxylation of 2-acetamidofluorene by hamster liver microsomal preparations.
    Lotlikar PD; Wertman K; Luha L
    Biochem J; 1973 Dec; 136(4):1137-40. PubMed ID: 4150650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol and drug metabolism in mouse liver microsomes subsequent to lipid peroxidation-induced destruction of cytochrome P-450.
    Vatsis KP; Kowalchyk JA; Schulman MP
    Biochem Biophys Res Commun; 1974 Nov; 61(1):258-64. PubMed ID: 4155297
    [No Abstract]   [Full Text] [Related]  

  • 16. Metabolic activation of oxygen by nitrofurantoin in the young chick.
    Peterson FJ; Combs GF; Holtzman JL; Mason RP
    Toxicol Appl Pharmacol; 1982 Aug; 65(1):162-9. PubMed ID: 7147248
    [No Abstract]   [Full Text] [Related]  

  • 17. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular distribution of OM cytochrome b-mediated NADH-semidehydroascorbate reductase activity in rat liver.
    Nishino H; Ito A
    J Biochem; 1986 Dec; 100(6):1523-31. PubMed ID: 3571184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced enzymatic degradation of radical damaged mitochondrial membrane components.
    Grant AJ; Jessup W; Dean RT
    Free Radic Res Commun; 1993; 19(2):125-34. PubMed ID: 8225039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Inhibition of enzymes of the internal mitochondrial membrane by benzbromarone].
    Kramar R; Müller MM
    Experientia; 1973 Apr; 29(4):391-2. PubMed ID: 4145335
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.