BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 35352098)

  • 1. Computational methods, databases and tools for synthetic lethality prediction.
    Wang J; Zhang Q; Han J; Zhao Y; Zhao C; Yan B; Dai C; Wu L; Wen Y; Zhang Y; Leng D; Wang Z; Yang X; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35352098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CSSLdb: Discovery of cancer-specific synthetic lethal interactions based on machine learning and statistic inference.
    Dou Y; Ren Y; Zhao X; Jin J; Xiong S; Luo L; Xu X; Yang X; Yu J; Guo L; Liang T
    Comput Biol Med; 2024 Mar; 170():108066. PubMed ID: 38310806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SL
    Liu Y; Wu M; Liu C; Li XL; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):748-757. PubMed ID: 30969932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality.
    Zhang K; Wu M; Liu Y; Feng Y; Zheng J
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i158-i167. PubMed ID: 37387166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network.
    Zhu Y; Zhou Y; Liu Y; Wang X; Li J
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36645245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming selection bias in synthetic lethality prediction.
    Seale C; Tepeli Y; Gonçalves JP
    Bioinformatics; 2022 Sep; 38(18):4360-4368. PubMed ID: 35876858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers.
    Wang S; Xu F; Li Y; Wang J; Zhang K; Liu Y; Wu M; Zheng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i418-i425. PubMed ID: 34252965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PiLSL: pairwise interaction learning-based graph neural network for synthetic lethality prediction in human cancers.
    Liu X; Yu J; Tao S; Yang B; Wang S; Wang L; Bai F; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii106-ii112. PubMed ID: 36124788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NSF4SL: negative-sample-free contrastive learning for ranking synthetic lethal partner genes in human cancers.
    Wang S; Feng Y; Liu X; Liu Y; Wu M; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii13-ii19. PubMed ID: 36124790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mslar: Microbial synthetic lethal and rescue database.
    Zhu SB; Jiang QH; Chen ZG; Zhou X; Jin YT; Deng Z; Guo FB
    PLoS Comput Biol; 2023 Jun; 19(6):e1011218. PubMed ID: 37289843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-omics characterization of synthetic lethality-related molecular features: implications for SL-based therapeutic target screening.
    Weng S; Ruan H
    FEBS J; 2023 Mar; 290(6):1477-1480. PubMed ID: 36461713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers.
    Cai R; Chen X; Fang Y; Wu M; Hao Y
    Bioinformatics; 2020 Aug; 36(16):4458-4465. PubMed ID: 32221609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Synthetic Lethal Interactions in Human Cancers Using Multi-View Graph Auto-Encoder.
    Hao Z; Wu D; Fang Y; Wu M; Cai R; Li X
    IEEE J Biomed Health Inform; 2021 Oct; 25(10):4041-4051. PubMed ID: 33974548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SL-Miner: a web server for mining evidence and prioritization of cancer-specific synthetic lethality.
    Liu X; Hu J; Zheng J
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38244572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering cancer vulnerabilities by machine learning prediction of synthetic lethality.
    Benfatto S; Serçin Ö; Dejure FR; Abdollahi A; Zenke FT; Mardin BR
    Mol Cancer; 2021 Aug; 20(1):111. PubMed ID: 34454516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning methods, databases and tools for drug combination prediction.
    Wu L; Wen Y; Leng D; Zhang Q; Dai C; Wang Z; Liu Z; Yan B; Zhang Y; Wang J; He S; Bo X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34477201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-view graph convolutional network for cancer cell-specific synthetic lethality prediction.
    Fan K; Tang S; Gökbağ B; Cheng L; Li L
    Front Genet; 2022; 13():1103092. PubMed ID: 36699450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic lethality prediction in DNA damage repair, chromatin remodeling and the cell cycle using multi-omics data from cell lines and patients.
    Markowska M; Budzinska MA; Coenen-Stass A; Kang S; Kizling E; Kolmus K; Koras K; Staub E; Szczurek E
    Sci Rep; 2023 Apr; 13(1):7049. PubMed ID: 37120674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SL-scan identifies synthetic lethal interactions in cancer using metabolic networks.
    Zangene E; Marashi SA; Montazeri H
    Sci Rep; 2023 Sep; 13(1):15763. PubMed ID: 37737478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization.
    Huang J; Wu M; Lu F; Ou-Yang L; Zhu Z
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):657. PubMed ID: 31870274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.