These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35352551)

  • 21. Hexagonal CuCo₂O₄ Nanoplatelets, a Highly Active Catalyst for the Hydrolysis of Ammonia Borane for Hydrogen Production.
    Liao J; Feng Y; Wu S; Ye H; Zhang J; Zhang X; Xie F; Li H
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30836644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.
    Sun D; Mazumder V; Metin Ö; Sun S
    ACS Nano; 2011 Aug; 5(8):6458-64. PubMed ID: 21766875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile construction of robust Ru-Co
    Jiang J; Wei W; Ren Z; Luo Y; Wang X; Xu Y; Chang M; Ai L
    J Colloid Interface Sci; 2023 Sep; 646():25-33. PubMed ID: 37182256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cobalt Phosphide-Supported Single-Atom Pt Catalysts for Efficient and Stable Hydrogen Generation from Ammonia Borane Hydrolysis.
    Wang S; Li S; Yu Y; Zhang T; Qu J; Sun Q
    Small Methods; 2024 May; ():e2400376. PubMed ID: 38801007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size-Dependent Catalytic Activity of Monodispersed Nickel Nanoparticles for the Hydrolytic Dehydrogenation of Ammonia Borane.
    Guo K; Li H; Yu Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):517-525. PubMed ID: 29243479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of longtime water/air-stable ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation.
    Yan JM; Zhang XB; Han S; Shioyama H; Xu Q
    Inorg Chem; 2009 Aug; 48(15):7389-93. PubMed ID: 19722696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing Effect of Fe
    Guan S; An L; Chen Y; Liu X; Shi J; Sun Y; Fan Y; Liu B
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42909-42916. PubMed ID: 34472335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ Formation of AgCo Stabilized on Graphitic Carbon Nitride and Concomitant Hydrolysis of Ammonia Borane to Hydrogen.
    Wang Q; Xu C; Ming M; Yang Y; Xu B; Wang Y; Zhang Y; Wu J; Fan G
    Nanomaterials (Basel); 2018 Apr; 8(5):. PubMed ID: 29701660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MoO₃-Doped MnCo₂O₄ Microspheres Consisting of Nanosheets: An Inexpensive Nanostructured Catalyst to Hydrolyze Ammonia Borane for Hydrogen Generation.
    Lu D; Feng Y; Ding Z; Liao J; Zhang X; Liu HR; Li H
    Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30586914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-Noble-Metal Nanoparticle Supported on Metal-Organic Framework as an Efficient and Durable Catalyst for Promoting H2 Production from Ammonia Borane under Visible Light Irradiation.
    Wen M; Cui Y; Kuwahara Y; Mori K; Yamashita H
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21278-84. PubMed ID: 27478964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetically Isolable Pt
    Akbayrak S; Özkar S
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34341-34348. PubMed ID: 34255473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane.
    Manna J; Akbayrak S; Özkar S
    J Colloid Interface Sci; 2017 Dec; 508():359-368. PubMed ID: 28843925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhodium nanoparticles confined in titania nanotubes for efficient Hydrogen evolution from Ammonia Borane.
    Xu H; Yu W; Zhang J; Zhou Z; Zhang H; Ge H; Wang G; Qin Y
    J Colloid Interface Sci; 2022 Mar; 609():755-763. PubMed ID: 34823851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly efficient hydrogen production from hydrolysis of ammonia borane over nanostructured Cu@CuCoO
    Li J; Ren X; Lv H; Wang Y; Li Y; Liu B
    J Hazard Mater; 2020 Jun; 391():122199. PubMed ID: 32045803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synergistic interface between metal Cu nanoparticles and CoO for highly efficient hydrogen production from ammonia borane.
    Li H; He W; Xu L; Pan Y; Xu R; Sun Z; Wei S
    RSC Adv; 2023 Apr; 13(17):11569-11576. PubMed ID: 37063727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual catalytic activity of a cucurbit[7]uril-functionalized metal alloy nanocomposite for sustained hydrogen generation: hydrolysis of ammonia borane and electrocatalysts for the hydrogen evolution reaction.
    Majumder D; Koley S; Barik A; Ruz P; Banerjee S; Viswanadh B; Barooah N; Tripathi VS; Sudarsan V; Kumar A; Tyagi AK; Bhasikuttan AC; Mohanty J
    Nanoscale; 2024 Jun; 16(22):10801-10811. PubMed ID: 38766776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dihydrogen Phosphate Stabilized Ruthenium(0) Nanoparticles: Efficient Nanocatalyst for The Hydrolysis of Ammonia-Borane at Room Temperature.
    Durap F; Caliskan S; Özkar S; Karakas K; Zahmakiran M
    Materials (Basel); 2015 Jul; 8(7):4226-4238. PubMed ID: 28793435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile Synthesis of Monodispersed Co Nanoparticles on Titanium Carbides for Hydrolysis of Ammonia Borane at Mild Temperature.
    Liu T; Wang QT; Sun YH; Zhao M
    J Nanosci Nanotechnol; 2019 Nov; 19(11):7392-7397. PubMed ID: 31039902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane.
    Akbayrak S; Tonbul Y; Özkar S
    Dalton Trans; 2016 Jul; 45(27):10969-78. PubMed ID: 27302302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ni
    Feng Y; Zhang J; Ye H; Li L; Wang H; Li X; Zhang X; Li H
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31540373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.