These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 35352733)

  • 1. Silver nanoparticles, nanoneedles and nanorings: impact of electromagnetic near-field on surface-enhanced Raman scattering.
    Hossain MK; Drmosh QA; Arifuzzaman M
    Phys Chem Chem Phys; 2022 Apr; 24(15):8787-8799. PubMed ID: 35352733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clusters-based silver nanorings: An active substrate for surface-enhanced Raman scattering.
    Hossain MK; Drmosh QA
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120141. PubMed ID: 34280795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK; Drmosh QA; Mohamedkhair AK
    Chem Asian J; 2021 Jul; 16(13):1807-1819. PubMed ID: 34009749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver-Decorated Silicon Nanostructures: Fabrication and Characterization of Nanoscale Terraces as an Efficient SERS-Active Substrate.
    Hossain MK
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Half-raspberry-like bimetallic nanoassembly: Interstitial dependent correlated surface plasmon resonances and surface-enhanced Raman spectroscopy.
    Hossain MK; Kitahama Y; Ozaki Y
    Phys Chem Chem Phys; 2021 Oct; 23(41):23875-23885. PubMed ID: 34651624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoassembly of gold nanoparticles: An active substrate for size-dependent surface-enhanced Raman scattering.
    Hossain MK
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Dec; 242():118759. PubMed ID: 32795952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The finite-difference time-domain (FDTD) guided preparation of Ag nanostructures on Ti substrate for sensitive SERS detection of small molecules.
    Sun G; Fu C; Dong M; Jin G; Song Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 269():120743. PubMed ID: 34942414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of surface enhanced Raman scattering active hotspot using near field scanning optical microscopy.
    Hossain MK
    Sci Rep; 2024 May; 14(1):10559. PubMed ID: 38719923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Surface-Enhanced Raman Scattering Substrates Based on the ZnO/Ag Core-Satellite Nanostructures.
    Sun Q; Xu Y; Gao Z; Zhou H; Zhang Q; Xu R; Zhang C; Yao H; Liu M
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of Ag@C@Ag hybrid nanoparticles as SERS substrate.
    Xin X; Li Y; Yu L; Li W; Li J; Lu R
    Anal Bioanal Chem; 2021 Sep; 413(23):5767-5777. PubMed ID: 34331088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MOF-Derived hierarchical porous 3D ZnO/Ag nanostructure as a reproducible SERS substrate for ultrasensitive detection of multiple environmental pollutants.
    Su G; Dang L; Liu G; Feng T; Wang W; Wang C; Wei H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120818. PubMed ID: 34999358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of low cost highly structured silver capped aluminium nanorods as SERS substrate for the detection of biological pathogens.
    Das S; Goswami LP; Gayathri J; Tiwari S; Saxena K; Mehta DS
    Nanotechnology; 2021 Sep; 32(49):. PubMed ID: 34428748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FDTD Analysis of Hotspot-Enabling Hybrid Nanohole-Nanoparticle Structures for SERS Detection.
    Gomez-Cruz J; Bdour Y; Stamplecoskie K; Escobedo C
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile fabrication of 2D hetero core-satellites patterned Ag nanoparticle arrays with tunable plasmonic bands for SERS detection.
    Cai Y; Huang L; Wang H; Dong W; Zhang Y; Zhang W; Liu Y; Li G; Shang F; Tong H
    Nanotechnology; 2019 Mar; 30(12):125701. PubMed ID: 30572325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two orders of magnitude extra SERS enhancement on silver nanoparticle-based substrate induced by laser irradiation in nitrogen ambient.
    Jin C; Chen J; Du Z; Liu C; Liu F; Hu J; Han M
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120372. PubMed ID: 34530198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of multifunctional g-C
    Liu X; Yu Y; Xie T; Cao Z; Li Z; Li Y; Gu Y; Han C; Yang G; Qu L
    Mikrochim Acta; 2023 Dec; 191(1):51. PubMed ID: 38147085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-Enhanced Raman Spectroscopy (SERS) Investigation of a 3D Plasmonic Architecture Utilizing Ag Nanoparticles-Embedded Functionalized Carbon Nanowall.
    Kim C; Hong B; Choi W
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles.
    Chaffin E; O'Connor RT; Barr J; Huang X; Wang Y
    J Chem Phys; 2016 Aug; 145(5):054706. PubMed ID: 27497571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-SERS-active and highly effective antimicrobial Ag nanodendrites.
    Li HB; Liu P; Liang Y; Xiao J; Yang GW
    Nanoscale; 2012 Aug; 4(16):5082-91. PubMed ID: 22777687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser treatment of Ag@ZnO nanorods as long-life-span SERS surfaces.
    Macias-Montero M; Peláez RJ; Rico VJ; Saghi Z; Midgley P; Afonso CN; González-Elipe AR; Borras A
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2331-9. PubMed ID: 25575182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.