These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 35352828)
1. Turgor loss point predicts survival responses to experimental and natural drought in tropical tree seedlings. Álvarez-Cansino L; Comita LS; Jones FA; Manzané-Pinzón E; Browne L; Engelbrecht BMJ Ecology; 2022 Jun; 103(6):e3700. PubMed ID: 35352828 [TBL] [Abstract][Full Text] [Related]
2. Leaf turgor loss point shapes local and regional distributions of evergreen but not deciduous tropical trees. Kunert N; Zailaa J; Herrmann V; Muller-Landau HC; Wright SJ; Pérez R; McMahon SM; Condit RC; Hubbell SP; Sack L; Davies SJ; Anderson-Teixeira KJ New Phytol; 2021 Apr; 230(2):485-496. PubMed ID: 33449384 [TBL] [Abstract][Full Text] [Related]
3. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Zhu SD; Chen YJ; Ye Q; He PC; Liu H; Li RH; Fu PL; Jiang GF; Cao KF Tree Physiol; 2018 May; 38(5):658-663. PubMed ID: 29474684 [TBL] [Abstract][Full Text] [Related]
4. Can leaf drought tolerance predict species abundance and its changes in tropical-subtropical forests? Song HQ; Wang YQ; Yan CL; Zeng WH; Chen YJ; Zhang JL; Liu H; Zhang QM; Zhu SD Tree Physiol; 2023 Aug; 43(8):1319-1325. PubMed ID: 37154549 [TBL] [Abstract][Full Text] [Related]
5. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest. Inoue Y; Ichie T; Kenzo T; Yoneyama A; Kumagai T; Nakashizuka T Tree Physiol; 2017 Oct; 37(10):1301-1311. PubMed ID: 28541561 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides). Ramírez-Valiente JA; Cavender-Bares J Tree Physiol; 2017 Jul; 37(7):889-901. PubMed ID: 28419347 [TBL] [Abstract][Full Text] [Related]
7. Extending the osmometer method for assessing drought tolerance in herbaceous species. Griffin-Nolan RJ; Ocheltree TW; Mueller KE; Blumenthal DM; Kray JA; Knapp AK Oecologia; 2019 Feb; 189(2):353-363. PubMed ID: 30627784 [TBL] [Abstract][Full Text] [Related]
8. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Bartlett MK; Zhang Y; Kreidler N; Sun S; Ardy R; Cao K; Sack L Ecol Lett; 2014 Dec; 17(12):1580-90. PubMed ID: 25327976 [TBL] [Abstract][Full Text] [Related]
9. Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest. Maréchaux I; Bartlett MK; Iribar A; Sack L; Chave J Biol Lett; 2017 Jan; 13(1):. PubMed ID: 28077687 [TBL] [Abstract][Full Text] [Related]
10. Increased mortality of tropical tree seedlings during the extreme 2015-16 El Niño. Browne L; Markesteijn L; Engelbrecht BMJ; Jones FA; Lewis OT; Manzané-Pinzón E; Wright SJ; Comita LS Glob Chang Biol; 2021 Oct; 27(20):5043-5053. PubMed ID: 34273223 [TBL] [Abstract][Full Text] [Related]
11. Turgor loss point explains climate-driven growth reductions in trees in Central Europe. Kunert N; Münchinger IK; Hajek P Plant Biol (Stuttg); 2024 Jun; ():. PubMed ID: 38940818 [TBL] [Abstract][Full Text] [Related]
13. Effects of El Niño drought on seedling dynamics in a seasonally dry tropical forest in Northern Thailand. Nutiprapun P; Hermhuk S; Nanami S; Itoh A; Kanzaki M; Marod D Glob Chang Biol; 2023 Jan; 29(2):451-461. PubMed ID: 36273818 [TBL] [Abstract][Full Text] [Related]
14. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. Eller CB; Lima AL; Oliveira RS New Phytol; 2016 Jul; 211(2):489-501. PubMed ID: 27038126 [TBL] [Abstract][Full Text] [Related]
15. Drought stress recovery of hydraulic and photochemical processes in Neotropical tree saplings. Manzi OJL; Bellifa M; Ziegler C; Mihle L; Levionnois S; Burban B; Leroy C; Coste S; Stahl C Tree Physiol; 2022 Jan; 42(1):114-129. PubMed ID: 34302178 [TBL] [Abstract][Full Text] [Related]
16. Evolution of leaf structure and drought tolerance in species of Californian Ceanothus. Fletcher LR; Cui H; Callahan H; Scoffoni C; John GP; Bartlett MK; Burge DO; Sack L Am J Bot; 2018 Oct; 105(10):1672-1687. PubMed ID: 30368798 [TBL] [Abstract][Full Text] [Related]
17. Different drought-tolerance strategies of tree species to cope with increased water stress under climate change in a mixed forest. Aranda I; Martin-Benito D; Sánchez-Gómez D; de Simón BF; Gea-Izquierdo G Physiol Plant; 2024; 176(5):e14562. PubMed ID: 39410909 [TBL] [Abstract][Full Text] [Related]
18. Long-term seedling and small sapling census data from the Barro Colorado Island 50 ha Forest Dynamics Plot, Panama. Comita LS; Aguilar S; Hubbell SP; Pérez R Ecology; 2023 Sep; 104(9):e4140. PubMed ID: 37461360 [TBL] [Abstract][Full Text] [Related]
19. Correlations between leaf economics, mechanical resistance and drought tolerance across 41 cycad species. Meng YY; Xiang W; Wen Y; Huang DL; Cao KF; Zhu SD Ann Bot; 2022 Sep; 130(3):345-354. PubMed ID: 34871356 [TBL] [Abstract][Full Text] [Related]
20. Small and slow is safe: On the drought tolerance of tropical tree species. Guillemot J; Martin-StPaul NK; Bulascoschi L; Poorter L; Morin X; Pinho BX; le Maire G; R L Bittencourt P; Oliveira RS; Bongers F; Brouwer R; Pereira L; Gonzalez Melo GA; Boonman CCF; Brown KA; Cerabolini BEL; Niinemets Ü; Onoda Y; Schneider JV; Sheremetiev S; Brancalion PHS Glob Chang Biol; 2022 Apr; 28(8):2622-2638. PubMed ID: 35007364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]