These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35353489)

  • 1. Freestanding and Permeable Nanoporous Gold Membranes for Surface-Enhanced Raman Scattering.
    Wyss RM; Parzefall M; Schlichting KP; Gruber CM; Busschaert S; Lightner CR; Lörtscher E; Novotny L; Heeg S
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16558-16567. PubMed ID: 35353489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor.
    Kassu A; Farley C; Sharma A; Kim W; Guo J
    Sensors (Basel); 2015 Nov; 15(12):29924-37. PubMed ID: 26633402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS.
    Zhao Y; Chen G; Du Y; Xu J; Wu S; Qu Y; Zhu Y
    Nanoscale; 2014 Nov; 6(22):13754-60. PubMed ID: 25285780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-Enhanced Raman Scattering and Fluorescence on Gold Nanogratings.
    Chang YC; Huang BH; Lin TH
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering using nanoporous gold on suspended silicon nitride waveguides.
    Cao Q; Feng J; Lu H; Zhang H; Zhang F; Zeng H
    Opt Express; 2018 Sep; 26(19):24614-24620. PubMed ID: 30469574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates.
    Jubb AM; Jiao Y; Eres G; Retterer ST; Gu B
    Nanoscale; 2016 Mar; 8(10):5641-8. PubMed ID: 26893035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Enhanced Raman Scattering (SERS) Active Gold Nanoparticles Decorated on a Porous Polymer Filter.
    Chen L; Yan H; Xue X; Jiang D; Cai Y; Liang D; Jung YM; Han XX; Zhao B
    Appl Spectrosc; 2017 Jul; 71(7):1543-1550. PubMed ID: 28441033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Excitation Nanocellulose Plasmonic Membranes for Molecular and Cellular SERS Detection.
    Zhang S; Xiong R; Mahmoud MA; Quigley EN; Chang H; El-Sayed M; Tsukruk VV
    ACS Appl Mater Interfaces; 2018 May; 10(21):18380-18389. PubMed ID: 29737825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates.
    Matricardi C; Hanske C; Garcia-Pomar JL; Langer J; Mihi A; Liz-Marzán LM
    ACS Nano; 2018 Aug; 12(8):8531-8539. PubMed ID: 30106555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focusing plasmons in nanoslits for surface-enhanced Raman scattering.
    Chen C; Hutchison JA; Van Dorpe P; Kox R; De Vlaminck I; Uji-I H; Hofkens J; Lagae L; Maes G; Borghs G
    Small; 2009 Dec; 5(24):2876-82. PubMed ID: 19816878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene.
    Mhlanga N; Ntho TA; Chauke H; Sikhwivhilu L
    Front Chem; 2022; 10():832282. PubMed ID: 35355787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong Dependence of Surface Enhanced Raman Scattering on Structure of Graphene Oxide Film.
    Wang L; Zhang Y; Yang Y; Zhang J
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30002326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Scattering Near-Field Microscope for Correlative Nanoimaging of SERS and Electromagnetic Hotspots.
    Kusch P; Mastel S; Mueller NS; Morquillas Azpiazu N; Heeg S; Gorbachev R; Schedin F; Hübner U; Pascual JI; Reich S; Hillenbrand R
    Nano Lett; 2017 Apr; 17(4):2667-2673. PubMed ID: 28323430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple and reliable approach for the fabrication of nanoporous silver patterns for surface-enhanced Raman spectroscopy applications.
    Capaccio A; Sasso A; Rusciano G
    Sci Rep; 2021 Nov; 11(1):22295. PubMed ID: 34785690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates.
    Hao Q; Wang B; Bossard JA; Kiraly B; Zeng Y; Chiang IK; Jensen L; Werner DH; Huang TJ
    J Phys Chem C Nanomater Interfaces; 2012 Apr; 116(13):7249-7254. PubMed ID: 24772200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films.
    Tang L; Liu Y; Liu G; Chen Q; Li Y; Shi L; Liu Z; Liu X
    Nanoscale Res Lett; 2019 Mar; 14(1):94. PubMed ID: 30868395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in situ approach for facile fabrication of robust and scalable SERS substrates.
    Wang YC; DuChene JS; Huo F; Wei WD
    Nanoscale; 2014 Jul; 6(13):7232-6. PubMed ID: 24896881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuneable Metamaterial-like Platforms for Surface-Enhanced Raman Scattering via Three-Dimensional Block Co-polymer-Based Nanoarchitectures.
    Banbury C; Rickard JJS; Mahajan S; Goldberg Oppenheimer P
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14437-14444. PubMed ID: 30880378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings.
    Ye J; Hutchison JA; Uji-i H; Hofkens J; Lagae L; Maes G; Borghs G; Van Dorpe P
    Nanoscale; 2012 Mar; 4(5):1606-11. PubMed ID: 22297424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage.
    Phan-Quang GC; Han X; Koh CSL; Sim HYF; Lay CL; Leong SX; Lee YH; Pazos-Perez N; Alvarez-Puebla RA; Ling XY
    Acc Chem Res; 2019 Jul; 52(7):1844-1854. PubMed ID: 31180637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.