These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35353572)

  • 1. Viscosity of bridgmanite determined by in situ stress and strain measurements in uniaxial deformation experiments.
    Tsujino N; Yamazaki D; Nishihara Y; Yoshino T; Higo Y; Tange Y
    Sci Adv; 2022 Apr; 8(13):eabm1821. PubMed ID: 35353572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite.
    Tsujino N; Nishihara Y; Yamazaki D; Seto Y; Higo Y; Takahashi E
    Nature; 2016 Nov; 539(7627):81-84. PubMed ID: 27750277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of diffusion-driven pure climb creep on the rheology of bridgmanite under lower mantle conditions.
    Reali R; Van Orman JA; Pigott JS; Jackson JM; Boioli F; Carrez P; Cordier P
    Sci Rep; 2019 Feb; 9(1):2053. PubMed ID: 30765772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periclase deforms more slowly than bridgmanite under mantle conditions.
    Cordier P; Gouriet K; Weidner T; Van Orman J; Castelnau O; Jackson JM; Carrez P
    Nature; 2023 Jan; 613(7943):303-307. PubMed ID: 36631648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nearly water-saturated mantle transition zone inferred from mineral viscosity.
    Fei H; Yamazaki D; Sakurai M; Miyajima N; Ohfuji H; Katsura T; Yamamoto T
    Sci Adv; 2017 Jun; 3(6):e1603024. PubMed ID: 28630912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pure climb creep mechanism drives flow in Earth's lower mantle.
    Boioli F; Carrez P; Cordier P; Devincre B; Gouriet K; Hirel P; Kraych A; Ritterbex S
    Sci Adv; 2017 Mar; 3(3):e1601958. PubMed ID: 28345037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's upper mantle.
    Ohuchi T; Kawazoe T; Higo Y; Funakoshi K; Suzuki A; Kikegawa T; Irifune T
    Sci Adv; 2015 Oct; 1(9):e1500360. PubMed ID: 26601281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NanoSIMS analysis of water content in bridgmanite at the micron scale: An experimental approach to probe water in Earth's deep mantle.
    Yang YN; Du Z; Lu W; Qi Y; Zhang YQ; Zhang WF; Zhang PF
    Front Chem; 2023; 11():1166593. PubMed ID: 37090248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions.
    Girard J; Amulele G; Farla R; Mohiuddin A; Karato S
    Science; 2016 Jan; 351(6269):144-7. PubMed ID: 26721681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure stabilizes ferrous iron in bridgmanite under hydrous deep lower mantle conditions.
    Zhang L; Chen Y; Yang Z; Liu L; Yang Y; Dalladay-Simpson P; Wang J; Mao HK
    Nat Commun; 2024 May; 15(1):4333. PubMed ID: 38773099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a Fe
    Kurnosov A; Marquardt H; Frost DJ; Ballaran TB; Ziberna L
    Nature; 2017 Mar; 543(7646):543-546. PubMed ID: 28289289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump.
    Fei H; Ballmer MD; Faul U; Walte N; Cao W; Katsura T
    Nature; 2023 Aug; 620(7975):794-799. PubMed ID: 37407826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium dissolution in bridgmanite in the Earth's deep mantle.
    Ko B; Greenberg E; Prakapenka V; Alp EE; Bi W; Meng Y; Zhang D; Shim SH
    Nature; 2022 Nov; 611(7934):88-92. PubMed ID: 36261527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and detectability of the bridgmanite to post-perovskite transformation in the Earth's D″ layer.
    Langrand C; Andrault D; Durand S; Konôpková Z; Hilairet N; Thomas C; Merkel S
    Nat Commun; 2019 Dec; 10(1):5680. PubMed ID: 31831735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-spin ferric iron in primordial bridgmanite crystallized from a deep magma ocean.
    Okuda Y; Ohta K; Nishihara Y; Hirao N; Wakamatsu T; Suehiro S; Kawaguchi SI; Ohishi Y
    Sci Rep; 2021 Sep; 11(1):19471. PubMed ID: 34593901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evidence for silica-enriched Earth's lower mantle with ferrous iron dominant bridgmanite.
    Mashino I; Murakami M; Miyajima N; Petitgirard S
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27899-27905. PubMed ID: 33093206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions.
    Shim SH; Grocholski B; Ye Y; Alp EE; Xu S; Morgan D; Meng Y; Prakapenka VB
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6468-6473. PubMed ID: 28584106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural Fe-bearing aluminous bridgmanite in the Katol L6 chondrite.
    Ghosh S; Tiwari K; Miyahara M; Rohrbach A; Vollmer C; Stagno V; Ohtani E; Ray D
    Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34588307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification.
    Xie L; Yoneda A; Yamazaki D; Manthilake G; Higo Y; Tange Y; Guignot N; King A; Scheel M; Andrault D
    Nat Commun; 2020 Jan; 11(1):548. PubMed ID: 31992697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dislocation creep in MgSiO3 perovskite at conditions of the Earth's uppermost lower mantle.
    Cordier P; Ungár T; Zsoldos L; Tichy G
    Nature; 2004 Apr; 428(6985):837-40. PubMed ID: 15103372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.