These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35353595)

  • 1. Contributions of Forward-Focused Voice to Audio-Vocal Feedback Measured Using Nasal Accelerometry and Power Spectral Analysis of Vocal Fundamental Frequency.
    Lee SH; Torng PC; Lee GS
    J Speech Lang Hear Res; 2022 May; 65(5):1751-1766. PubMed ID: 35353595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term Average Spectrum and Nasal Accelerometry in Sentences of Differing Nasality and Forward-Focused Vowel Productions Under Altered Auditory Feedback.
    Lee SH; Lee GS
    J Voice; 2022 Aug; ():. PubMed ID: 36050247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of Middle-Frequency Modulations in Vocal Fundamental Frequency to Different Vocal Intensities and Auditory Feedback.
    Lee SH; Fang TJ; Yu JF; Lee GS
    J Voice; 2017 Sep; 31(5):536-544. PubMed ID: 28268129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vocal fold nodules: A disorder of phonation organs or auditory feedback?
    Lee SH; Yu JF; Fang TJ; Lee GS
    Clin Otolaryngol; 2019 Nov; 44(6):975-982. PubMed ID: 31436035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Audio-vocal responses of vocal fundamental frequency and formant during sustained vowel vocalizations in different noises.
    Lee SH; Hsiao TY; Lee GS
    Hear Res; 2015 Jun; 324():1-6. PubMed ID: 25749240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hearing aid amplification on voice F0 variability in speakers with prelingual hearing loss.
    Lee GS; Liu C; Lee SH
    Hear Res; 2013 Aug; 302():1-8. PubMed ID: 23648550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability in voice fundamental frequency of sustained vowels in speakers with sensorineural hearing loss.
    Lee GS
    J Voice; 2012 Jan; 26(1):24-9. PubMed ID: 21227645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Relation of Articulatory and Vocal Auditory-Motor Control in Typical Speakers.
    Lester-Smith RA; Daliri A; Enos N; Abur D; Lupiani AA; Letcher S; Stepp CE
    J Speech Lang Hear Res; 2020 Nov; 63(11):3628-3642. PubMed ID: 33079610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Fundamental Frequency in Dysphonic Patients During Phonation and Speech.
    Ziethe A; Petermann S; Hoppe U; Greiner N; Brüning M; Bohr C; Döllinger M
    J Voice; 2019 Nov; 33(6):851-859. PubMed ID: 30143332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustically Induced Vocal Training for Individuals With Impaired Hearing.
    Graf S; Bungenstock A; Richter L; Unterhofer C; Gruner M; Hartmann P; Hoyer P
    J Voice; 2023 May; 37(3):374-381. PubMed ID: 33632556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Pitch and Loudness Auditory Feedback Perturbations on Vocal Quality During Sustained Phonation.
    Schenck A; Hilger AI; Levant S; Kim JH; Lester-Smith RA; Larson C
    J Voice; 2023 Jan; 37(1):37-47. PubMed ID: 33191054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory-Motor Perturbations of Voice Fundamental Frequency: Feedback Delay and Amplification.
    Weerathunge HR; Abur D; Enos NM; Brown KM; Stepp CE
    J Speech Lang Hear Res; 2020 Sep; 63(9):2846-2860. PubMed ID: 32755506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of speech noise on vocal fundamental frequency using power spectral analysis.
    Lee GS; Hsiao TY; Yang CC; Kuo TB
    Ear Hear; 2007 Jun; 28(3):343-50. PubMed ID: 17485983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Correlates of Vocal Production and Motor Control in Human Heschl's Gyrus.
    Behroozmand R; Oya H; Nourski KV; Kawasaki H; Larson CR; Brugge JF; Howard MA; Greenlee JD
    J Neurosci; 2016 Feb; 36(7):2302-15. PubMed ID: 26888939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delay-induced low-frequency modulation of the voice during sustained phonation.
    Brajot FX; Lawrence D
    J Acoust Soc Am; 2018 Jul; 144(1):282. PubMed ID: 30075671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibratory and perceptual measurement of resonant voice.
    Yiu EM; Chen FC; Lo G; Pang G
    J Voice; 2012 Sep; 26(5):675.e13-9. PubMed ID: 22633329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Voice Focus on Oral-Nasal Balance in Speech.
    de Boer G; Bressmann T
    J Voice; 2016 Nov; 30(6):705-710. PubMed ID: 26494180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of Auditory and Somatosensory Feedback to Vocal Motor Control.
    Smith DJ; Stepp C; Guenther FH; Kearney E
    J Speech Lang Hear Res; 2020 Jul; 63(7):2039-2053. PubMed ID: 32603626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory Feedback Control of Vocal Pitch in Spasmodic Dysphonia.
    Thomas A; Mirza N; Eliades SJ
    Laryngoscope; 2021 Sep; 131(9):2070-2075. PubMed ID: 33169850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vocal Behavior in Environmental Noise: Comparisons Between Work and Leisure Conditions in Women With Work-related Voice Disorders and Matched Controls.
    Szabo Portela A; Granqvist S; Ternström S; Södersten M
    J Voice; 2018 Jan; 32(1):126.e23-126.e38. PubMed ID: 28551331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.